Multiple risk factor management

Benefits seen in recent trials

Interaction of antihypertensive and lipid lowering therapy

Stephen MacMahon
DSc Med, PhD, FACC, FAHA, FCSANZ

Professor of Cardiovascular Medicine, University of Sydney Principal Director, The George Institute, Sydney
Honorary Consultant, Royal Prince Alfred Hospital, Sydney
THE GEORGE INSTITUTE
for International Health

Outline

> Large-scale epidemiological studies
> Blood pressure
> Cholesterol
> Joint effects
> Large-scale clinical trials
> Antihypertensive
> Lipid lowering
> Joint effects

THE GEORGE INSTITUTE
for International Health

Outline

> Large-scale epidemiological studies
> Blood pressure
> Cholesterol
> Joint effects
> Large-scale clinical trials
> Antihypertensive
> Lipid lowering
> Joint effects

THE GEORGE INSTITUTE

Fatal ischemic heart disease by usual SBP and age

33867 deaths at ages 40-89
Age at risk $20 \mathrm{mmHg} \downarrow$ SBP
 $31 \% \downarrow$ risk 40\% \downarrow risk $46 \% \downarrow$ risk $50 \% \downarrow$ risk

51\% \downarrow risk

Fatal stroke by usual SBP and age

11274 deaths at ages 50-89

Fatal stroke (by sub-type): hazard ratios for 20 mmHg lower usual SBP

11688 deaths at ages 40-89

Combined Effects of Systolic Blood Pressure and Cholesterol on Fatal CHD

Incremental Risk of Fatal CHD Associated With Multiple Rjsk Factors

Risk shown is compared with the baseline risk for a 40-year-old male nonsmoker with SBP 120 mm Hg , TC of $185 \mathrm{mg} / \mathrm{dL}(4.8 \mathrm{mmol} / \mathrm{L})$, no glucose intolerance, who is electrocardiographic left ventricular hypertrophy (ECG-LVH) negative, and has a probability of developing CVD of $15 / 1000$ (or 1.5%) in 8 years. Clustering of risk factors in US men aged 40 to 74 years.

Outline

> Large-scale epidemiological studies
> Blood pressure
> Cholesterol
> Joint effects
> Large-scale clinical trials
> Antihypertensive
> Lipid lowering
> Joint effects

THE GEORGE INSTITUTE

Blood Pressure Lowering Treatment Trialists' Collaboration

1995-2006

Secretariat:
The George Institute, University of Sydney Faculty of Medicine \& The Royal Prince Alfred Hospital, Sydney

Principal sponsor:
National Heaith \& Medical Research Council of Australia

Analysis cycles

- $1^{\text {st }}$ cycle main report Lancet 2000; 355:1955-64
- $2^{\text {nd }}$ cycle main report Lancet 2003; 362:1527-35
- $2^{\text {nd }}$ cycle diabetes paper Arch Intern Med 2005 27;165:1410-9
- RAAS inhibitor analysis 2005-2006
- $3^{\text {rd }}$ cycle 2006-2008

Analysis cycles

- $1^{\text {st }}$ cycle main report Lancet 2000; 355:1955-64
- $2^{\text {nd }}$ cycle main report Lancet 2003; 362:1527-35
- $2^{\text {nd }}$ cycle diabetes paper Arch Intern Med 2005 27;165:1410-9
- RAAS inhibitor analysis 2005-2006
- $3^{\text {rd }}$ cycle 2006-2008

$2^{\text {nd }}$ cycle Contributing studies

First Cycle ($\mathrm{N}=74,696$)
ABCD (H)
CAPPP
HOPE
HOT
INSIGHT
NICS-EH
NORDIL
PART-2
PREVENT
QUIET
SCAT
STOP-2
SYST-EUR
UKPDS-HDS
VHAS

Second Cycle ($\mathrm{N}=87,669$)
AASK
ABCD (N)
ALLHAT
ANBP2
CONVINCE
ELSA
IDNT
JMIC-B
LIFE
NICOLE
PROGRESS
RENAAL
SCOPE
SHELL

Active vs. control Stroke

| | BP
 difference
 (mm Hg) | Favours
 active | Favours
 control | RR (95\% CI) |
| :--- | :--- | :--- | :--- | :--- | :--- |

Active vs. control Coronary heart disease

Active vs. control Composite major CVD events

	BP difference $(\mathrm{mm} \mathrm{Hg})$	Favours active	Favours control	RR (95\% CI)

ASCOT-BPLA and LLA Primary Objectives

To compare the effect on non-fatal myocardial infarction (MI) and fatal CHD of :
a standard antihypertensive regimen (β-blocker +/diuretic) with a more contemporary regimen
(CCB +/- ACE inhibitor)
and
atorvastatin with placebo in those with total cholesterol
<250mg/dl

Effects of amlodipine-based regimen on systolic and diastolic blood pressure

ascot

Effects of amlodipine-based regimen among hypertensive individuals: total stroke

ascot

Effects of amlodipine-based regimen among hypertensive individuals: ischemic heart disease

ascot

Effects of amlodipine-based regimen among hypertensive individuals: total CV death

\%

Number at risk
Amlodipine \pm perindopril Atenolol \pm thiazide

9639
9618

9544
9532

9441
9415

9322
9261

8078
7975

Reduction in stroke risk by SBP reduction

Difference in SBP reduction between trial arms (mm Hg)

Reduction in coronary disease risk by SBP reduction

Difference in SBP reduction between trial arms (mm Hg)

Effects of cholesterol lowering for the primary prevention of coronary disease

Effect of treatment on coronary heart disease events

Study	Treatment (No of events/ No of subjects)	Control (No of events/ No of subjects)	Odds ratio $\text { (} 95 \% \text { CI) }$	Weight (\%)	Odds ratio $\text { (} 95 \% \text { CI) }$	Year
LRC	155/1906	187/1900	-	29.5	0.81 (0.65 to 1.01)	1984
HHS	56/2051	84/2030	-	14.1	0.65 (0.46 to 0.92)	1987
WOSCOPS	174/3302	248/3293	-	40.3	0.68 (0.56 to 0.83)	1995
AFCAPS/TexCAPS	S 56/3304	96/3301	- -	16.2	0.58 (0.41 to 0.80)	1998
Total	441/10 563	615/10524	-	100.0	0.70 (0.62 to 0.79)	

χ^{2} test for heterogeneity $=3.23$ ($\mathrm{df}=3 ; \mathrm{P}=0.36$)

Effect of treatment on coronary heart disease mortality

χ^{2} test for heterogeneity $=0.25$ ($\mathrm{df}=3 ; \mathrm{P}=0.97$)

Effects of atorvastatin among hypertensive individuals: ischemic heart disease

Effects of atorvastatin among hypertensive individuals: total stroke

ascot

CARDS: Effects of Atorvastatin on Major

 Cardiovascular Events in Patients With Diabetes

Patients had no history of CVD and slightly elevated LDL-C levels
*Primary end point=time to first occurrence of the following: acute CHD events, coronary revascularization, or stroke.
Colhoun et al. Diabet Med. 2002;19:201-211.
Colhoun et al. Lancet. 2004;364:685-696.

Effects on major cardiovascular events by baseline cholesterol

Lipid levels at entry	SIMVASTATIN (10269)	$\begin{gathered} \text { PLACEBO } \\ (10267) \end{gathered}$	Rate ratio STATIN better	$\text { \& } 95 \% \mathrm{Cl}$ PLACEBO better
LDL cholesterol (mmol/l)				
<3.0 (116 mg/dl)	598 (17.6\%)	756 (22.2\%)		
$\geq 3.0<3.5$	484 (19.0\%)	646 (25.7\%)	\square	
≥ 3.5 (135 mg/dl)	951 (22.0\%)	1183 (27.2\%)		
Total cholesterol (mmol/)				
< 5.0 (193 mg/dl)	360 (17.7\%)	472 (23.1\%)	-	
$\geq 5.0<6.0$	744 (18.9\%)	964 (24.5\%)	-	
> 6.0 (323 mg/dl)	929 (21.6\%)	1149 (26.8\%)		
ALL PATIENTS	2033 (19.8\%)	2585 (25.2\%)	-	24\% SE 3 reduction (2P<0.00001)
N		0.4	0.6	$\begin{array}{llll}0 & 1.2 & 1.4\end{array}$

Effects on major cardiovascular events by ancillary treatment

Baseline
treatment

SIMVASTATIN
(10269)

Aspirin
Yes
No

Rationale for multi-factorial intervention

10 mmHg reduction in SBP reduces risk by about 25%,
$1 \mathrm{mmol} / \mathrm{l}$ reduction in cholesterol reduces risk by $\mathbf{3 0 \%}$
Low dose aspirin reduces risk by by 25\%
these effects are independent of one other

Total major coronary events

Interaction $\mathrm{p}=0.025$

Total stroke

Number of people worldwide at high cardiovascular risk in 2000

Conclusions (I)

> Large-scale epidemiological studies
> Blood pressure continuously associated with stroke and coronary disease risks (from SBP 110 mmHg)
> Cholesterol continuously associated with stroke and coronary disease risks (from TC $4 \mathrm{mmol} / \mathrm{I}$))
> Effects of these two risk factors are multiplicative
> At age 40y, modest elevations in SBP (150 mmHg) and total cholesterol ($6.7 \mathrm{mmol} / \mathrm{l}$) increase coronary disease risks 3-4 fold

Equivalent to risks associated with diabetes

Conclusions (II)

> Large-scale clinical trials
> Blood pressure lowering with diuretic, ACEI, CCB or ARB-based therapy reduces risks of major cardiovascular events
> Cholesterol lowering with statins reduces risks of major cardiovascular events
> Effects are directly related to size of risk factor reduction
> Effects of two treatments are multiplicative
$>10 \mathrm{mmHg}$ reduction in SBP and $1 \mathrm{mmol} / \mathrm{l}$ reduction in total cholesterol will lower cardiovascular risks by about half

THE GEORGE INSTITUTE

