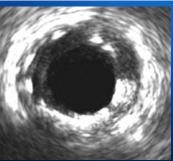
Basics of Invasive Imaging and Hemodynamic Tools for Coronary Artery Disease

Optical Coherence Tomography

Myeong-Ki Hong, M.D. Ph D

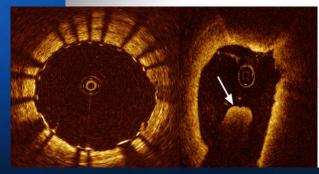
Professor of Medicine Division of Cardiology, Severance Cardiovascular Hospital Yonsei University College of Medicine, Seoul, Korea

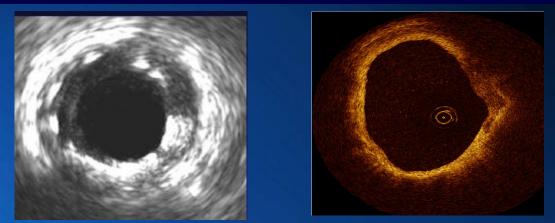
SEVERANCE CARDIOVASCULAR HOSPITAL

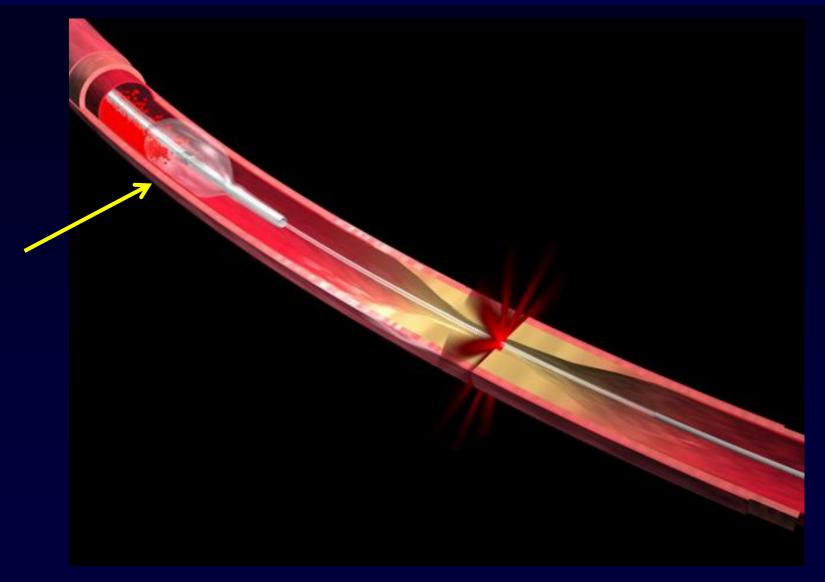

What's OCT?

A high-resolution imaging technology that employs near-infrared light to probe micrometer-scale structures inside biological tissues

VS.




<u>OCT</u>


IVUS vs. OCT

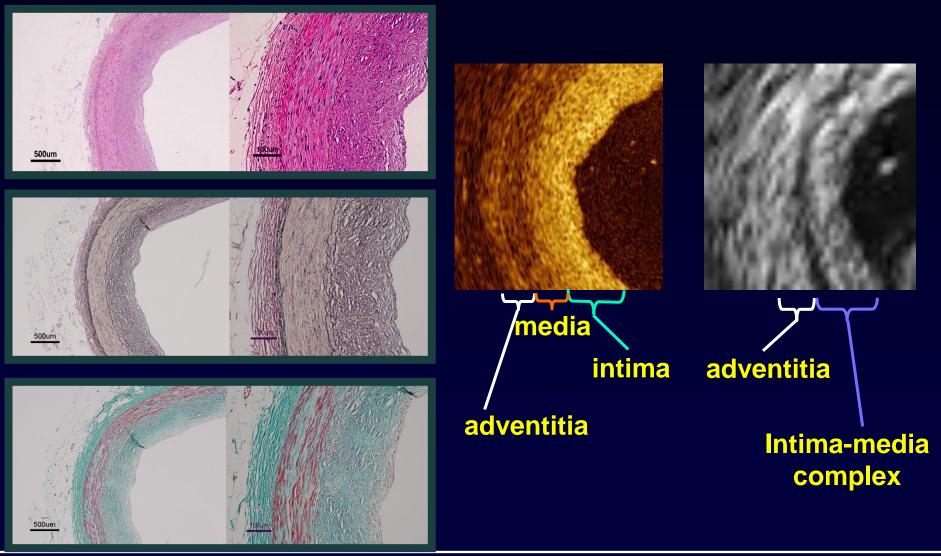
	IVUS	ОСТ	
Resolution	Axial 100-150 μm Lateral 150-300 μm	15-20 μm 25-40 μm	
Size of imaging core	0.8 mm	0.4 mm	
Dynamic range	40-60 dB	90-110 dB	
Frame rate	30 frame/s	15 frame/s	

Pervious version; Time Domain OCT

New Version OCT, Frequency Domain OCT; without balloon occlusion

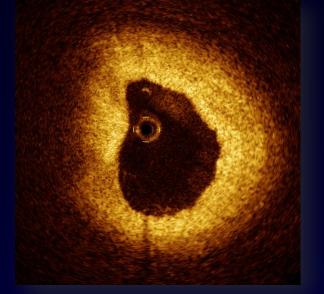
Today's talk

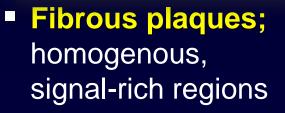
- Plaque characterization by an OCT
- Vulnerable plaque detected by an OCT
- Strut-level evaluation by an OCT
- Neointimal tissue characterization by an OCT

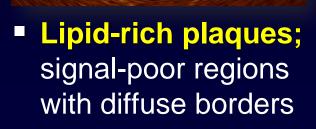


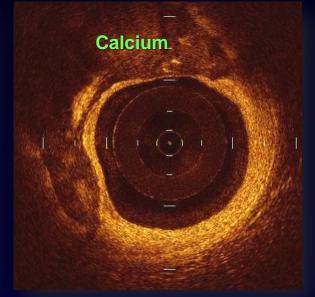
Today's talk

- Plaque characterization by an OCT
- Vulnerable plaque detected by an OCT
- Strut-level evaluation by an OCT
- Neointimal tissue characterization by an OCT


Coronary Artery: three layer



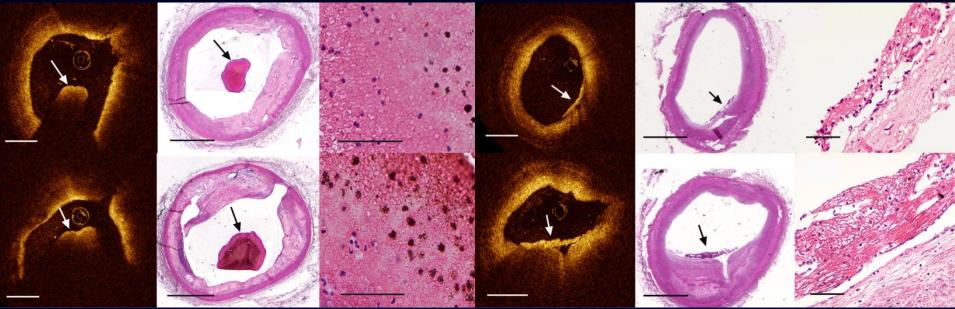

SEVERANCE CARDIOVASCULAR HOSPITAL



OCT image criteria for atherosclerotic plaque characterization

 Fibrocalcific plaques;

> well-delineated, signal-poor regions with sharp borders


Yabushita H, et al. Circulation 2002;106:1640

Intracoronary thrombi

Red Thrombus

White Thrombus

; consisting mainly of red blood cells
 → identified as high-backscattering protrusions inside the lumen of the artery, with signal-free shadowing

; consisting mainly of platelets and white blood cells
→ identified as signal-rich, lowbackscattering projections protruding into the lumen

Akasaka, Am J Cardiol 2006

Ruptured Plaque, Dissection

Plaque rupture

Plaque rupture

Kim BK, Hong MK. Curr Cardiovasc Imaging Rep 2010; 3:197–206

Today's talk

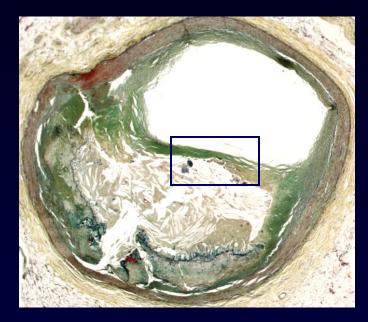
- Plaque characterization by an OCT
- Vulnerable plaque detected by an OCT
- Strut-level evaluation by an OCT
- Neointimal tissue characterization by an OCT

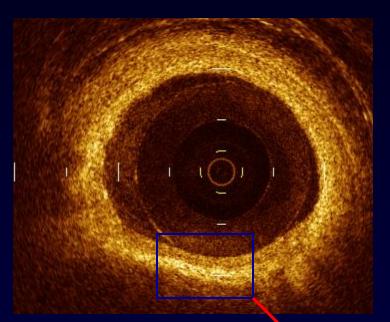
Vulnerable Plaques

thin cap fibroatheroma (TCFA)

Thin cap

- Fibrous cape < 65 μm</p>
- Collagen depletion (due to loss of smooth muscle)
- Inflammatory cells (macrophage, lymphocyte)

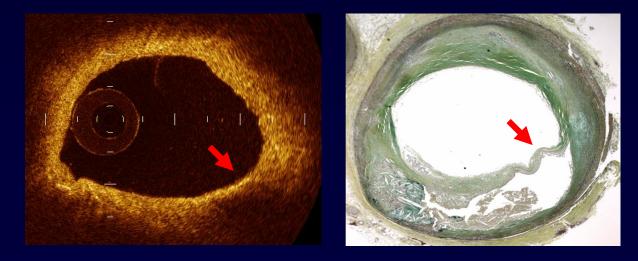

Lipid rich plaque


- Hemorrhagic, necrotic core (size > 1.0 mm² and/ or > 10% of the plaque area)
- Angiogenic blood vessels into intima from the adventitia

Thin Cap Fibroatheroma (TCFA)

1. Thin fiber cap; 2. large necrotic core; 3. macrophage infiltration

TCFA without macrophage infiltration:Two-layer structure.Boundary formed by the cap and the underlying core



OCT images of TCFA and plaque rupture

Kim BK, Hong MK. Curr Cardiovasc Imaging Rep 2010; 3:197–206

Assessment of Culprit Lesion Morphology in AMI; Ability of OCT Compared with IVUS and Coronary Angioscopy

disruption

 30 patients with AMI, and analyzed the culprit lesions by OCT, Angioscopy, and IVUS.

Findings	ОСТ (n=30)	Angioscopy (n=30)	IVUS (n=30)	p-value
Fibrous cap disruption	22 (73%)	14 (47%)	12 (40%)	0.021
Fibrous cap erosion	7 (23%)	1 (3%)	0 (0%)	0.003
Thrombus	30 (100%)	30 (100%)	10 (33%)	<0.001

Only OCT could estimate the fibrous cap thickness

Kubo K, et al. JACC 2007; 50:933

Today's talk

- Plaque characterization by an OCT
- Vulnerable plaque detected by an OCT
- Strut-level evaluation by an OCT
- Neointimal tissue characterization by an OCT

Traditional OCT image analysis

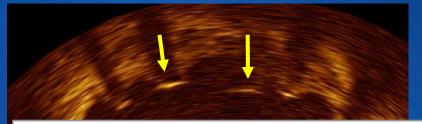
Analysis of cross-sectional OCT images at a 1-mm interval (every 15 frames).

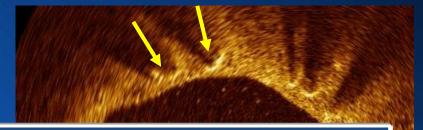
1. Neointimal thickness

The distances between the endoluminal surface of neointimal and the strut reflection

2. Stent apposition

The distances between the endoluminal surface of the strut reflection and the vessel wall





9 months FU OCT - Cypher Stent

Malapposed and uncovered struts

Covered struts with neointima

Are you acceptable or OK when you look at the uncovered or malapposed struts at follow-up OCT ? Maybe everybody no

Pathological Correlates of Late Drug-Eluting Stent Thrombosis

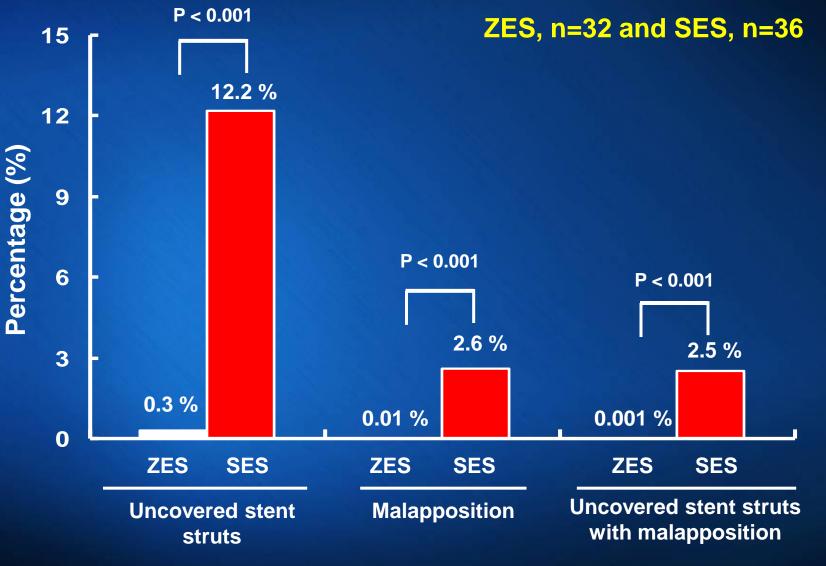
Strut Coverage as a Marker of Endothelialization

The most powerful histological predictor of stent thrombosis was endothelial coverage.

The best morphometric predictor of LST was the ratio of uncovered to total stent struts.

The odds ratio for thrombus with a ratio of uncovered to total struts > 30% \Rightarrow 9.0 (95% CI , 3.5 to 22)

Finn AV, et al. Circulation 2007;115:2435-41

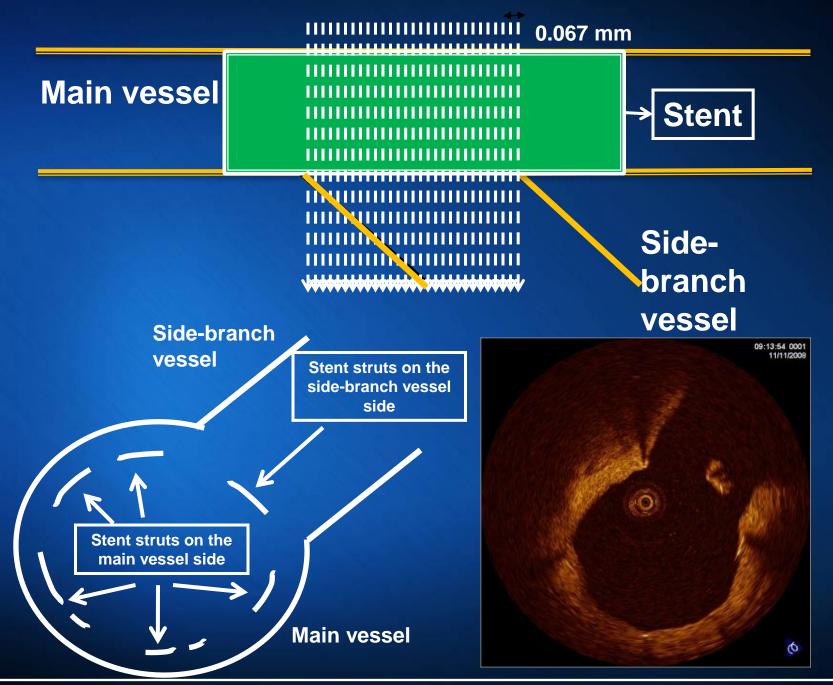

OCT definition

Uncovered strut = Neointimal hyperplasia (NIH) thickness of 0 µm

The percentage of uncovered struts = (number of uncovered struts/total number of struts in all cross-sections of the lesion) × 100

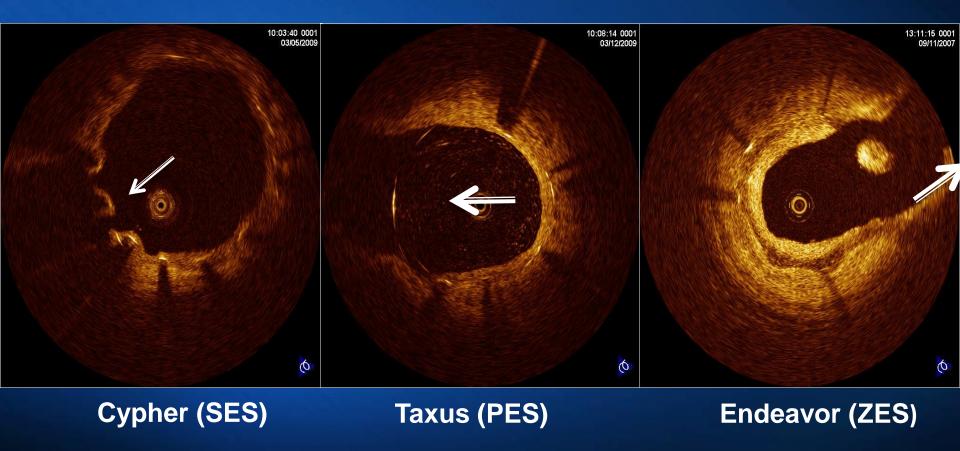
OCT Evaluation of ZES at 9 Month FU

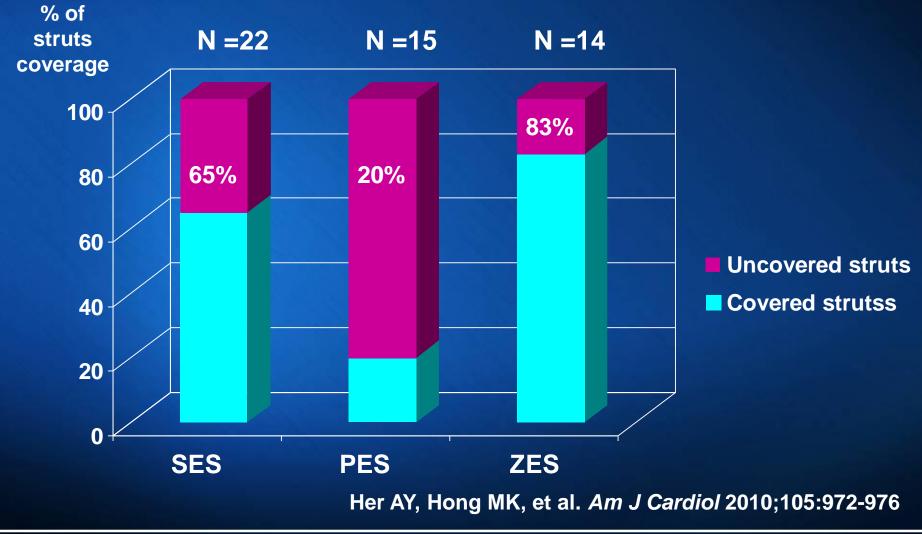
Kim JS, et al. Heart 2009;95:1907-12



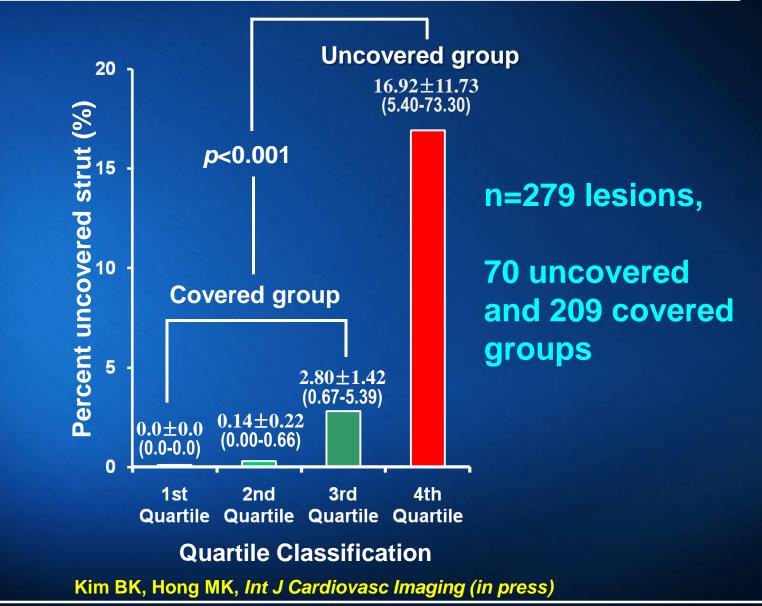
Stent struts on Side Branch ?

Neointimal Coverage on the DES Struts Crossing the Side-Branch Vessels: an OCT Study

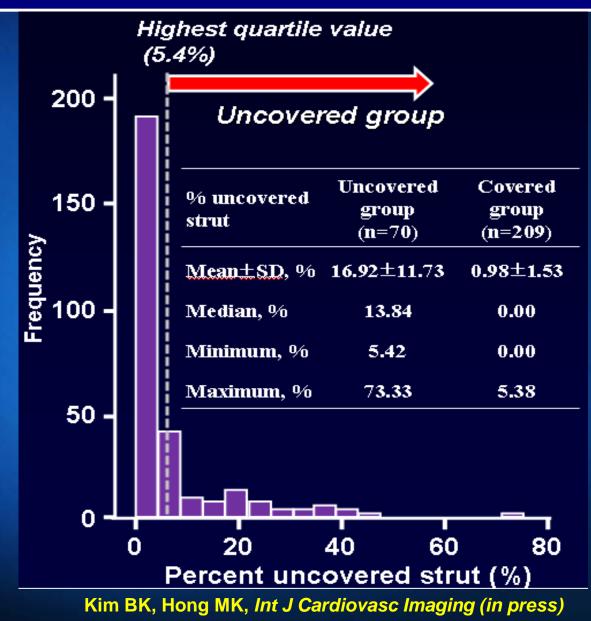

Her AY, Hong MK et al, Am J Cardiol 2010;105:1565-69


8

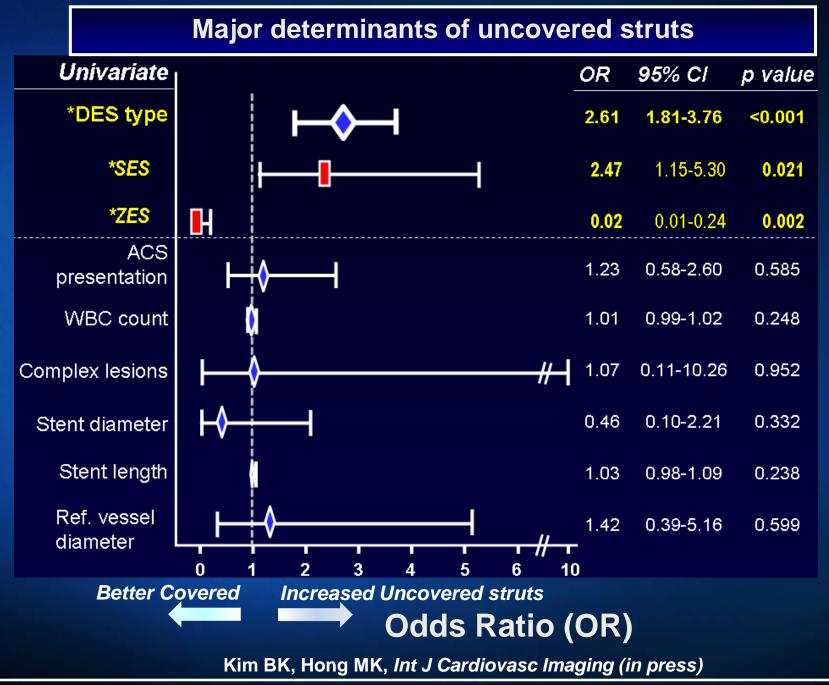
Comparison of neointimal thickness on unapposed struts crossing the side-branch



Composition of struts coverage crossing the side branch



Major determinants of uncovered struts



 $\textcircled{0}{0}$

Major determinants of uncovered stent struts

8

Serial Changes of Tiny Stent Malapposition Not Detected by Intravascular Ultrasound (Follow-up Optical Coherence Tomography Study)

Tiny post-SM: SM not detected by IVUS, but be visualized with OCT.

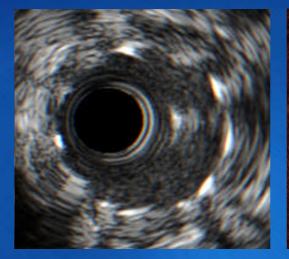
Study population

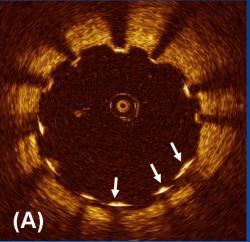
- 42 patients from the Yonsei OCT registry :
- Both post-stent & follow-up OCT examination after DES implantation

Initial tiny post-SM was found in 26 (62%) of 42 patients

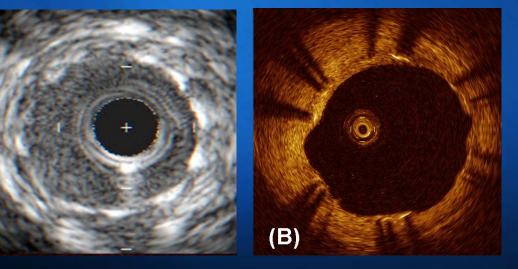
Kim WH, Hong MK et al, Clin Res Cardiol 2010;99:639-644

SEVERANCE CARDIOVASCULAR HOSPITAL

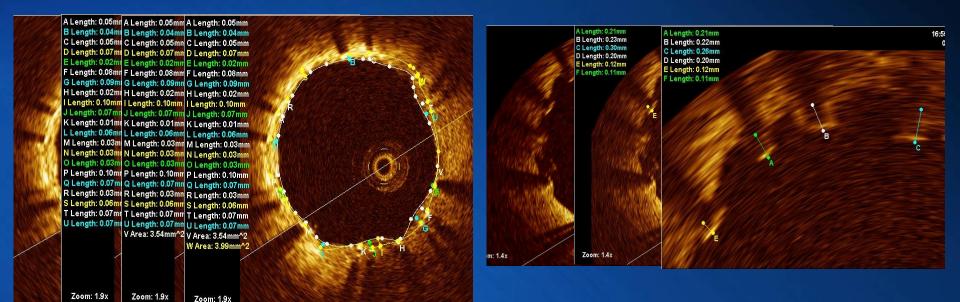

OCT measurements (n=26)


	Immediate post-stenting	Follow up	P Value
Number of analyzed stent struts	5615	5474	
Mean length of analyzed segment (mm)	22.8 ± 6.2	22.9 ± 5.1	0.22
Length of malapposition segment (mm)	2.3 ± 2.3	0.1 ± 0.3	<0.001
Num. of malapposed struts (n)	27 ± 26	2 ± 5	<0.001
% of malapposed struts (%)	12.2 ± 11.0	1.0 ± 2.2	<0.001
Mean stent area at the segment with malapposed struts (mm ²)	7.37 ± 1.71	7.39 ± 1.65	0.08
Mean extra-malapposition area (mm ²)	0.35 ± 0.16	0.04 ± 0.11	<0.001
Largest extra-malapposition area (mm ²)	0.54 ± 0.46	0.07 ± 0.18	<0.001
Mean NIH thickness at the segment with malapposed struts (mm)		0.15 ± 0.1	

Kim WH, Hong MK et al, Clin Res Cardiol 2010;99:639-644

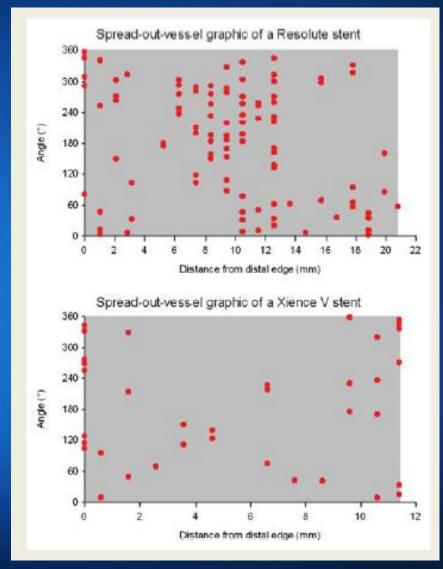


Corresponding images of IVUS & OCT


(A) Malapposed struts of an SES. 3 stent struts seem to float into the lumen with an extrastent area (arrows). Smallsized post-SM is not be detected by IVUS, but be clearly visualized with OCT image follow-up OCT

(B) Follow-up OCT images shows that all strut surfaces is covered by neointima

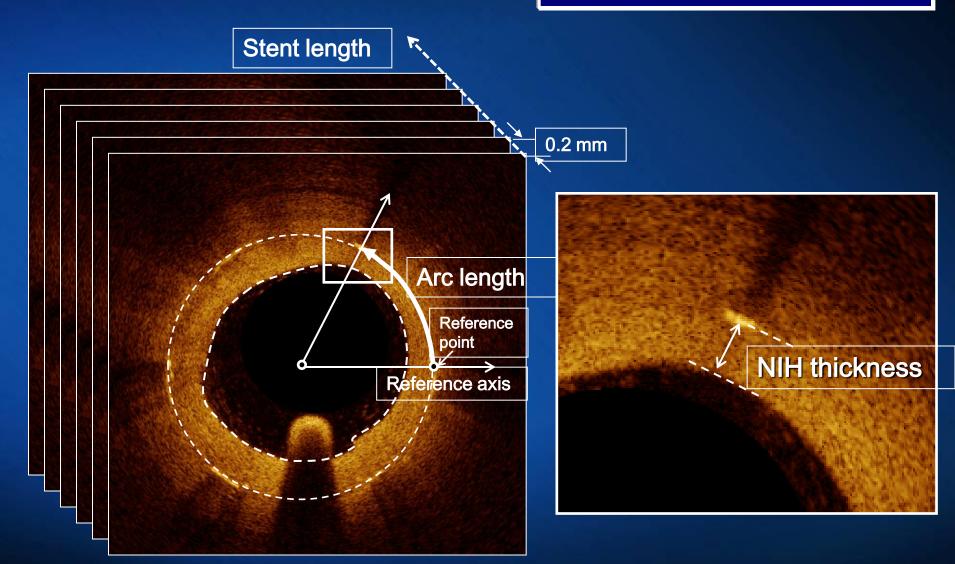
Is the traditional OCT analysis sufficient ?


Neointimal thickness

Stent apposition

What are the spatial distributions of uncovered or malapposed struts ?

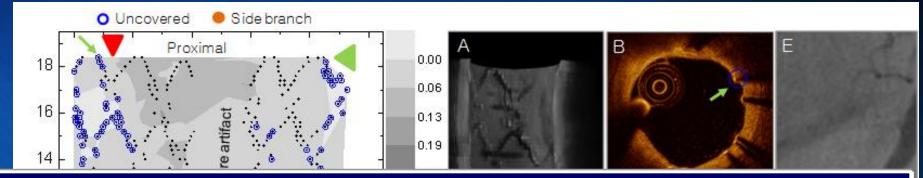
Spread-out-vessel graphic


Gutie'rrez-Chico JL et al, Eur Heart J 2011; 32: 2454-2463

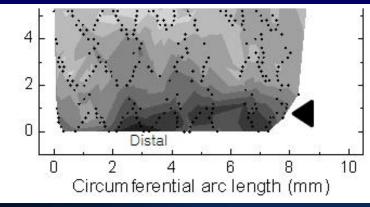
SEVERANCE CARDIOVASCULAR HOSPITAL

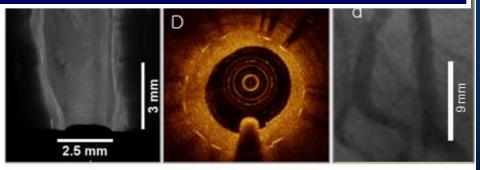
YONSEI UNIVERSITY COLLEGE OF MEDICINE

Creation of contour map


Data (x, y, z) = Data (arc length, stent length, NIH thickness)

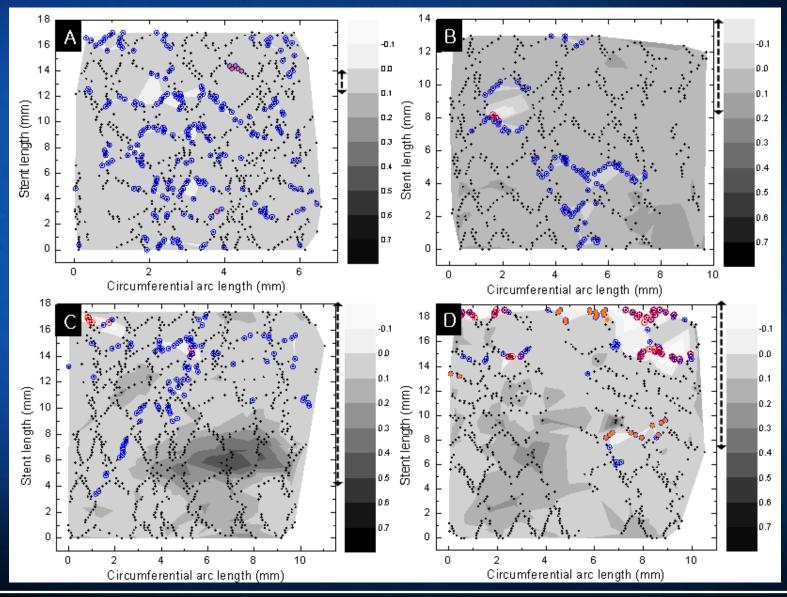
SEVERANCE CARDIOVASCULAR HOSPITAL

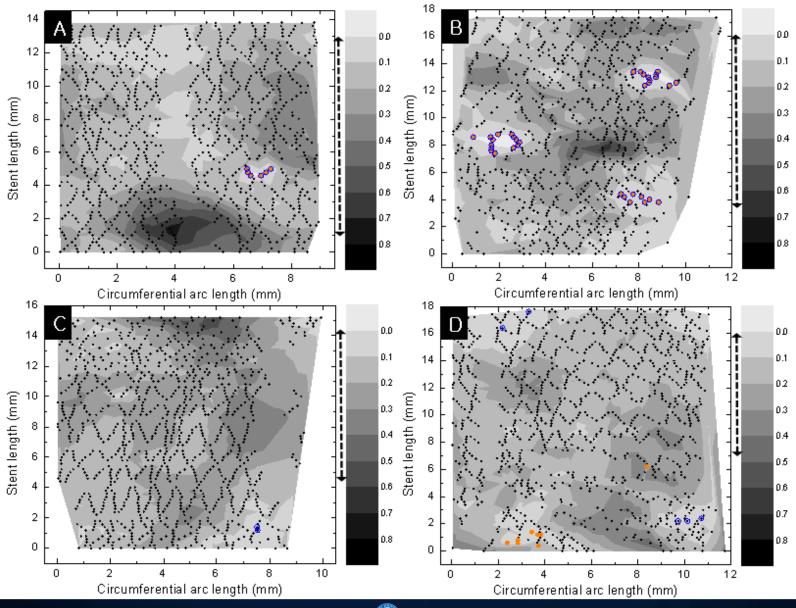



YONSEI UNIVERSITY COLLEGE OF MEDICINE

Creation of contour map

This technology provides detailed information previously obtainable only by gross pathologic examination.





Contour map of SES at follow-up OCT

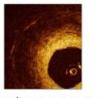
Contour map of ZES at follow-up OCT

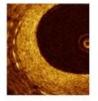
Today's talk

- Plaque characterization by an OCT
- Vulnerable plaque detected by an OCT
- Strut-level evaluation by an OCT
- Neointimal tissue characterization by an OCT

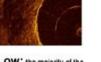
Homogeneous appearances in IVUS

OCT patterns of stent restenosis (24 patients, 25 vessels)

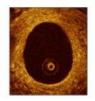

Restenotic tissue structure


Homogeneous: restenotic tissue has uniform optical properties and does not show focal variations in backscattering pattern.

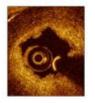
Heterogeneous: restenotic tissue has focally changing optical properties and shows various backscattering patterns


Lavered: restenotic tissue consists of concentric layers with different optical properties: an adluminal high scattering layer and an abluminal low scattering layer

Restenotic tissue backscatter



High: the majority of the tissue shows high backscatter and appears bright



LOW: the majority of the tissue shows low backscatter and appears dark or black

Lumen shape

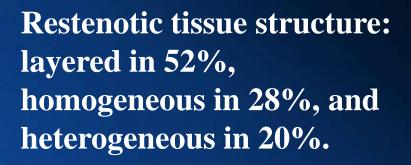
Regular: lumen border is sharpy delineated, smooth and circular

Irregular: lumen border irregular with tissue protrusions from the vessel wall into the lumen

Microvessels visible

Yes: microvessels appear as well delineated low backscattering structures less than 200 micron in diameter that show a trajectory within the

vessel


Presence of intraluminal material

Yes: there is visible material inside the vessel lumen

No

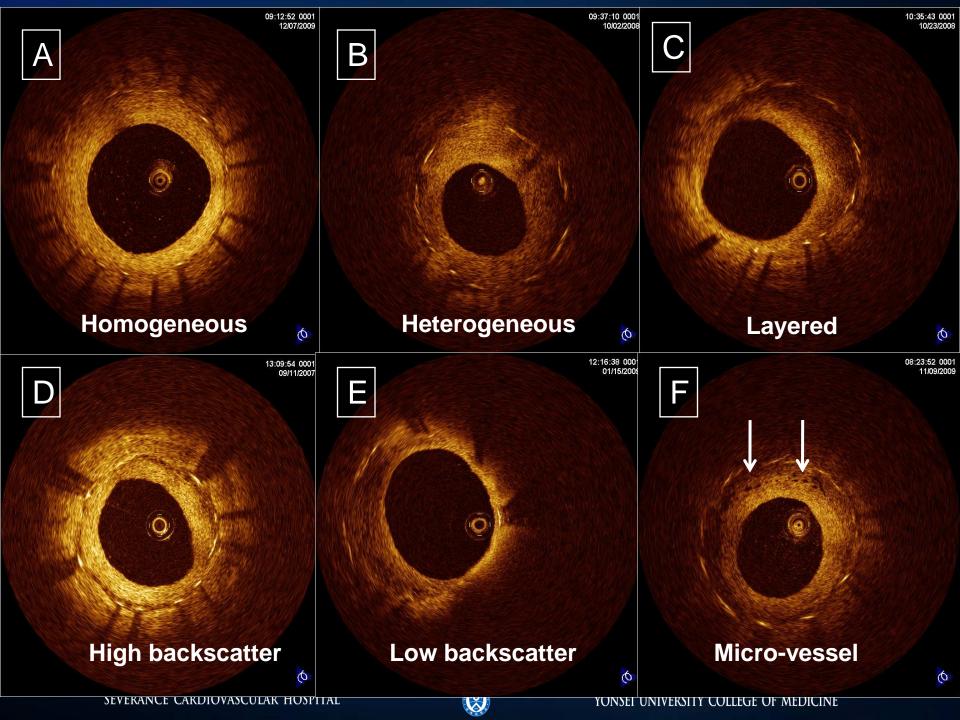
No

The predominant backscatter was high in 72%.

Microvessels were visible in 12%

Comparison of neointimal tissue characteristics by OCT between the lesions with and without ISR

The lesions of $\geq 10\%$ burden of neointimal tissue by OCT measurements were included in this study.


DES: SES (n= 52), PES (n= 57), ZES (n= 84), and EES (n= 32).

ISR was defined as \geq 50% DS at the follow-up angiogram.

A follow-up OCT (mean follow-up duration: 12.0±10.5 months) was performed in 209 patients with 225 lesions (192 lesions without ISR and 33 lesions with ISR).

Lee SJ, MK Hong, et al. Clin. Cardiol 2011;34: 633-639

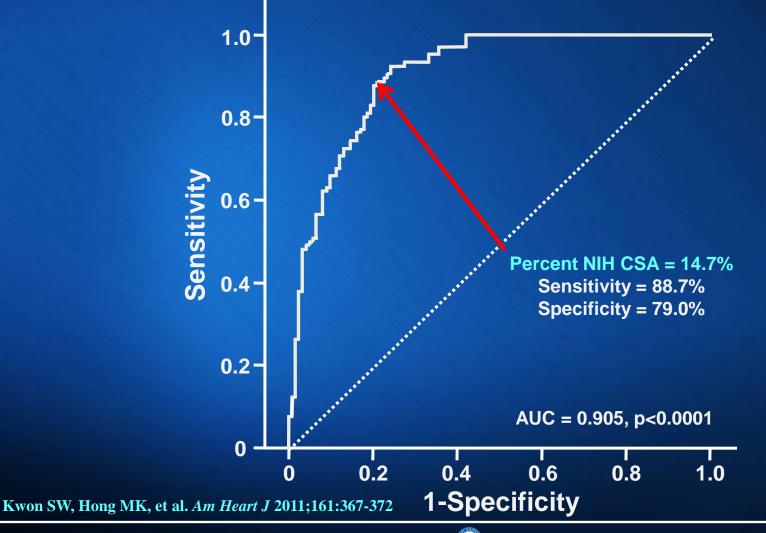
Comparison of Morphologic Characteristics of Neointimal Tissue by OCT between the Lesions with and without ISR

	No ISR (n=192)	ISR (n=33)	p- value
Tissue coverage structure			
Homogeneous	148 (77.1%)	7 (21.2%)	
Heterogeneous	32 (16.7%)	14 (42.4%)	<0.001
Layered	12 (6.2%)	12 (36.4%)	
Backscatter			
High	152 (79.2%)	13 (39.4%)	-0 001
Low	40 (20.8%)	20 (60.6%)	<0.001
Intraluminal material	9 (4.7%)	3 (9.1%)	0.4
Microvessels	11 (5.7%)	16 (48.5%)	< 0.001
	Lee SJ, MK Hong, et al.	Clin. Cardiol 201	;34: 633-639

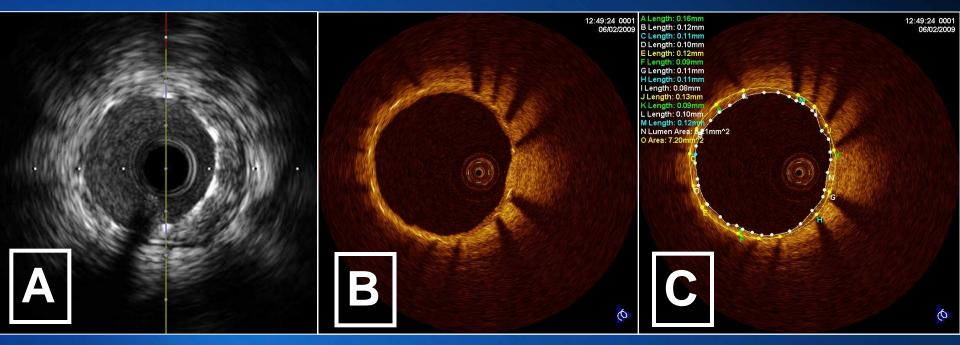
SEVERANCE CARDIOVASCULAR HOSPITAL

Qualitative assessment of neointimal tissue after DES implantation: Comparison between OCT and IVUS

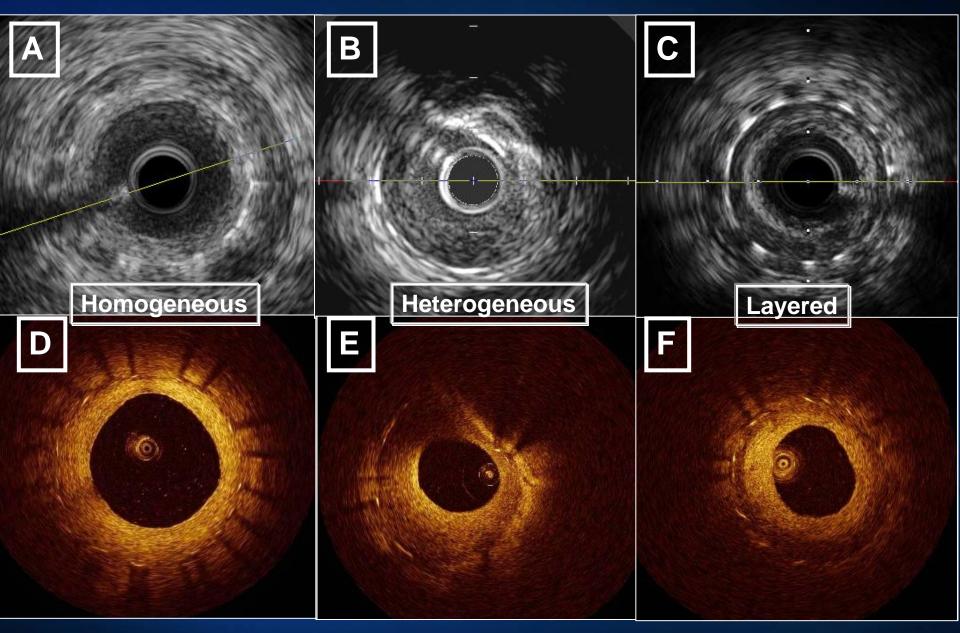
A total of 243 patients (250 lesions) underwent follow-up OCT and IVUS after DES implantation.


Mean time interval from DES implantation to follow-up OCT/IVUS was 12.0 ± 9.3 months.

NIH was detected by both OCT and IVUS in 121 of 250 lesions, and categorized as homogenous (n=74, OCT; n=107, IVUS), heterogeneous (n=34, OCT; n=4, IVUS), or layered (n=13, OCT; n=10, IVUS).


Kwon SW, Hong MK, et al. Am Heart J 2011;161:367-372

Percent neointimal hyperplasia (NIH) cross-sectional area (CSA) was calculated as (NIH CSA/stent CSA)×100 for receiveroperating characteristic analysis of NIH detection by IVUS



NIH undetectable by IVUS NIH detected by OCT: percent NIH crosssectional area = 13.8%, NIH thickness = 11.1 μm

Kwon SW, Hong MK, et al. Am Heart J 2011;161:367-372

Kwon SW, Hong MK, et al. Am Heart J 2011;161:367-372

SEVERANCE CARDIOVASCULAR HOSPITAL

Qualitative assessment of neointimal tissue after DES implantation: Comparison between OCT and IVUS

	OCT				
IVUS	Homogenous	Heterogeneous	Layered	Total	
Homogenous	74	28	5	107	
Heterogeneous	0	3	1	4	
Layered	0	3	7	10	
Total	74	34	13	121	

Cramer's V nominal correlation: p-value <0.0001, r = 0.455

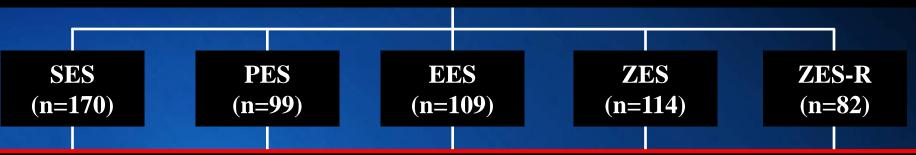
Of the 121 NIH lesions, non-homogenous NIH was detected in 14 (11.6%) by IVUS and 47 (38.8%) by OCT. OCT and IVUS assessments of NIH morphology showed a moderate correlation (p<0.001, r=0.455); however, assessments differed in 37 (30.6%) of 121 lesions.

Kwon SW, Hong MK, et al. Am Heart J 2011;161:367-372

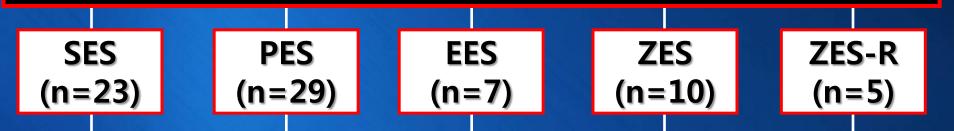
Clinical implications of OCT patterns of in-stent restenosis following implantation of DES

- Determined according to the optical properties and backscattering patterns in the segment with maximal lumen narrowing;
- 1. <u>Homogeneous</u>; uniform optical properties and not showing focal variations in backscattering pattern
- 2. <u>Heterogeneous</u>; focally changing optical properties and showing various backscattering patterns
- **3.** <u>Layered</u>; concentric layers with different optical properties.

Homogeneous IOSPITAL


Heterogeneous

YONSEI UNIVERS


Layered

Study at a glance

A total of 574 lesions in 510 patients were followed by an OCT in OCT registry

A total of 74 lesions with DES restenosis were identified in 69 patients.

OCT assessment and classifying restenosis into 3 tissue structures

 \bigcirc

Follow-up OCT measurements - I

	Rest			
Variables	Homogenous (n=21)	Heterogeneous (n=21)	Layered (n=32)	р
Time to follow-up OCT (days)	652 ± 495	1036 ± 693	767 ± 684	0.139
Quantitative OCT assessment				
Entire segments				
Mean stent CSA (mm ²)	7.0 ± 1.9	6.2 ± 1.7	7.1 ± 1.7	0.165
Mean lumen CSA (mm²)	4.5 ± 1.2	4.2 ± 1.8	4.4 ± 1.5	0.790
Mean NIH CSA (mm ²)	2.5 ± 1.2	2.0 ± 0.9	2.7 ± 1.5	0.173
Mean % NIH CSA (%)	34 ± 11	32 ± 15	37 ± 17	0.522
Segments with minimal lumen	CSA			
Stent CSA (mm ²)	6.4 ± 2.2	5.8 ± 2.1	6.9 ± 2.1	0.168
Lumen CSA (mm ²)	2.1 ± 1.0	1.8 ± 1.1	1.9 ± 1.3	0.625
NIH CSA (mm ²)	4.4 ± 2.2	4.1 ± 1.9	5.0 ± 1.9	0.204
% NIH CSA (%)	65 ± 18	69 ± 19	73 ± 12	0.208

Follow-up OCT measurements - II

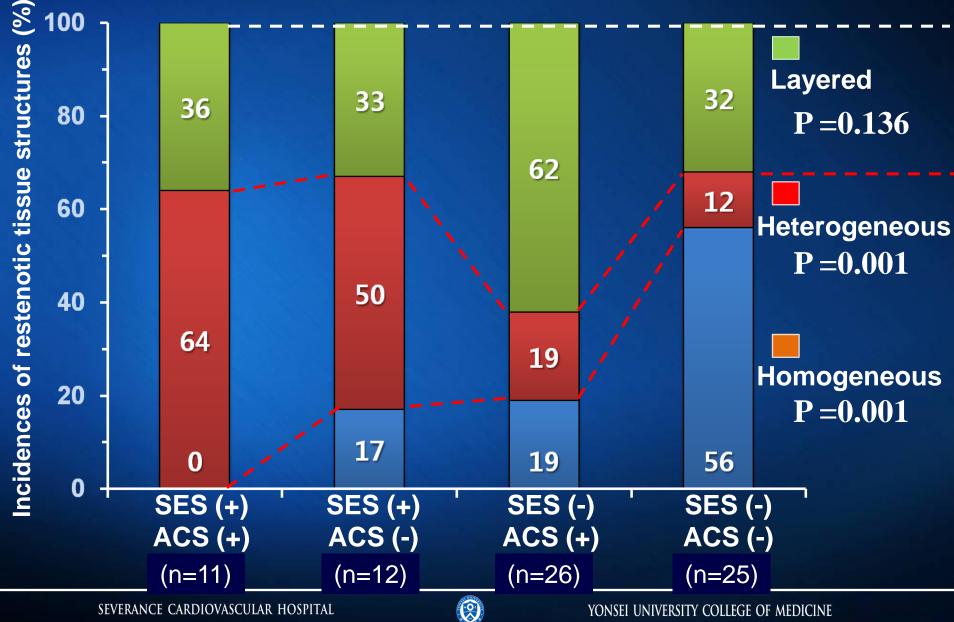
	Reste			
- Variables	Homogenous (n=21)	Heterogeneous (n=21)	Layered (n=32)	- р
Qualitative OCT assessment				
Backscatter				<0.001
High	18 (86%)	3 (14%)*	3 (9%)*	
Low	3 (14%)	18 (86%) *	29 (91%) *	
Presence of thrombi	6 (29%)	11 (52%)**, §	5 (16%)	0.016
Micro-vessels	5 (24%)	2 (10%)	10 (31%)	0.183

*p<0.01 and **p<0.05 compared to homogenous structure. \$p<0.05 compared to layered structure.

Clinical presentations at the onset of restenosis and their treatment modalities for restenosis

Restenotic tissue structure

Variables	Homogenous (n=21)	Heterogeneous (n=21)	Layered (n=32)	p
No. of patients	20	18	31	
Clinical presentations of reste	enosis			0.012
Stable angina	19 (95%)	10 (56%) *, §	25 (81%)	
Acute coronary syndrome	1 (5%)	8 (44%) *, §	6 (19%)	
Treatment for in-stent restend	osis			0.014
Medical treatments	6 (28%)	1 (5%)	12 (38%)	
Repeat revascularization	15 (72%)	20 (95%)	20 (62%)	
		*p<0.01 compared t §p<0.05 compa		
SEVERANCE CARDIOVASCULAR HOSPI	TAL 👰	VONSEL LINIVERSI	IV COLLEGE OF MEDICINE	



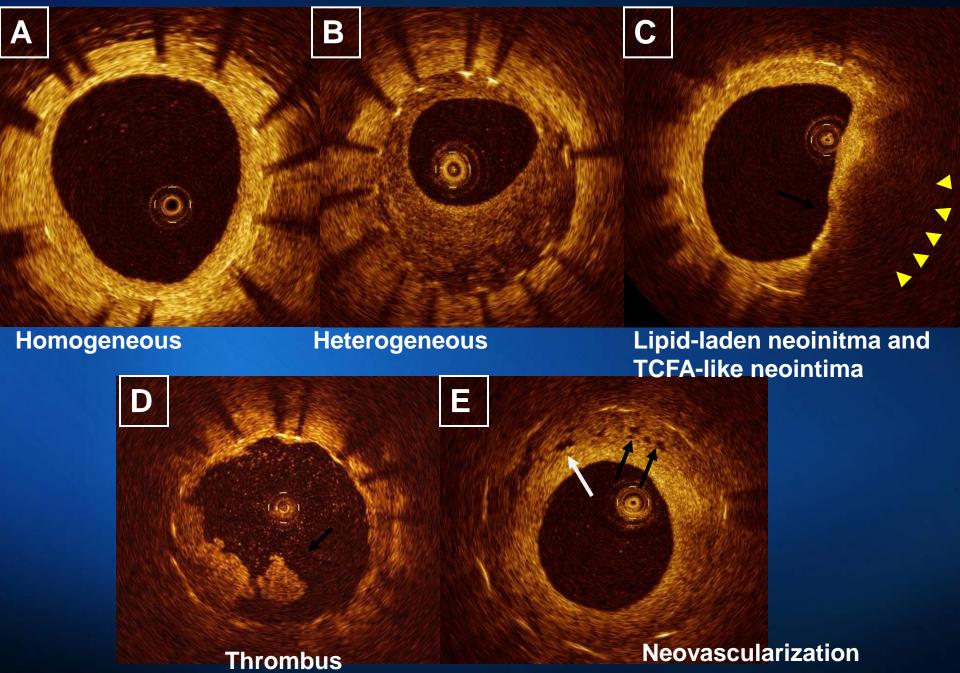
Predictors of heterogeneous tissue structure

	Univariate analysis		Multivariate analys		ysis	
	OR	95% CI	р	OR	95% CI	р
Clinical variables						
Age	1.03	0.97 – 1.09	0.476	1.01	0.92 - 1.11	0.802
Diabetes mellitus	2.98	1.07 - 10.03	0.042	2.98	0.60 - 22.08	0.107
Acute coronary syndrome	4.88	1.25 - 18.32	0.032	8.01	1.10 - 53.80	0.042
Time to follow-up OCT	1.00	1.00 - 1.01	0.044	1.01	1.00 - 1.01	0.077
Angiographic or procedural variable	? S					
Reference vessel size	0.35	0.08 - 1.50	0.256	0.56	0.02 - 16.60	0.734
Post-procedural MLD	0.27	0.05 - 1.41	0.223	0.68	0.02 - 21.88	0.845
Stent diameter	1.17	0.02 - 1.25	0.090	0.33	0.01 - 10.74	0.530
Stent length	1.04	0.96 - 1.15	0.543	1.07	0.89 - 1.18	0.798
<u>Use of sirolimus-eluting stents</u>	8.33	2.75 - 30.47	0.001	7.71	1.35 - 43.41	0.024

Comparison of restenotic tissue types among 4 groups according to the use of SES or initial ACS presentation

SEVERANCE CARDIOVASCULAR HOSPITAL

YONSEI UNIVERSITY COLLEGE OF MEDICINE


Serial OCT

Study population

From the OCT registry database of our institute, we identified 250 patients who underwent follow-up OCT examination at 9 months (± 3 months) after DES implantation.

Among these patients, a second serial follow-up OCT examination at 2 years (± 3 months) after stent implantation was performed in 72 patients with 76 stented lesions: 23 SESs, 20 PESs, 25 ZESs and EESs.

SEVERANCE CARDIOVASCULAR HOSPITAL

YONSEI UNIVERSITY COLLEGE OF MEDICINE

Neointimal rupture

SEVERANCE CARDIOVASCULAR HOSPITAL

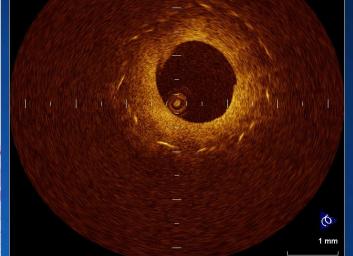
YONSEI UNIVERSITY COLLEGE OF MEDICINE

Quantitative OCT analysis

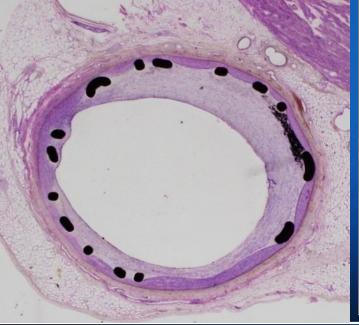
Cross-section (CS) level analysis	9-month	2-year	р
Total cross sections	1947	1947	
Mean stent CSA (mm ²)	7.0 ± 1.6	7.0 ± 1.6	0.92
Mean lumen CSA (mm ²)	5.7 ± 1.4	5.4 ± 1.6	0.01
Mean NIH area (mm ²)	1.3 ± 0.9	1.7 ± 1.1	0.001
Percent NIH CSA (%)	18.7 ± 11.3	23.4 ± 14.5	<0.001
CSs with any uncovered strut	418 (21.5%)	244 (12.5%)	<0.001
CSs with uncovered strut ratio > 0.3	153 (7.9%)	91 (4.7%)	<0.001
CSs with any malapposed strut	50 (2.6%)	70 (3.6%)	0.36

Quantitative OCT analysis

Strut level analysis	9-month	2-year	р
Total strut number	19430	19475	
Mean NIH thickness (µm)	164 ± 95	214 ± 132	<0.001
Percentage of uncovered struts	787 (4.1%)	468 (2.4%)	<0.001
Percentage of malapposed strut	127 (0.7%)	183 (0.9%)	0.24
Percentage of uncovered and malapposed struts	76 (0.4%)	82 (0.4%)	0.89


Qualitative OCT analysis

Qualitative analysis	9-month	2-year	р
Intracoronary thrombus	8 (10.5%)	7 (9.2%)	0.79
Lipid-laden neointima	11 (14.5%)	21 (27.6%)	0.047
TCFA-like neointima	3 (3.9%)	10 (13.2%)	0.04
Heterogeneous pattern	49 (64.5%)	47 (61.8%)	0.73
Neovascularization	34 (44.7%)	56 (73.7%)	<0.001



Pig model Endeavor

Pig model, BMS

SEVERANCE CARDIOVASCULAR HOSPITAL

YONSEI UNIVERSITY COLLEGE OF MEDICINE

(0) 1 mn

Conclusion

 OCT provides various new information in many different fields as mentioned below;

Plaque Characterization
 Vulnerable Plaque Detection
 Strut-level evaluation
 ; Uncovered or Malapposed struts Neointimal tissue characterization
 ; Evaluation of DES failure

However, its related clinical relevance needs to be clarified through further clinical follow-up studies.

