TRI cons

Seung Hwan Lee

Division of Cardiology Department of Internal medicine Yonsei University Wonju College of Medicine

Contents

1.Radiation exposure

2. Learning curve

3. Anatomical consideration

4. Procedural complexity

Mihran Kassabian (1870-1910) (X-Ray dermatitis hands)

Radiation Exposure is Important Skin injury due to cardiac intervention

Operators also Radiation Induced Skin Injury

Radiation is Important

If radial access is associated with a significant increase in radiation exposure,

this will offset some of its other proven benefits and could limit its applicability

Review of recent literature comparing radiation exposure in transfemoral and transradial cardiac catheterisation

	FA			RA				
	No	DAP (Gycm²)	FT (min)	Rad Exp (uSv)	No	DAP (Gycm²)	FT (min)	Rad Exp (uSv)
Mann et al 1996 -PCI	126			8.8	138			13.5
Sandborg et al 2003 -CA	40	38±22	4.6±4		36	51±25	7.5±4	
Sandborg et al 2003 –CA+PCI	42	47±34	12.5±9		24	75±47	18.4±9	
Sandborg et al 2003 -All	82	43±29	8.6±8		60	61±37	11.9±9	
Larrazet et al 2003 –ad hoc PCI	184	138	12		218	175	17	
Geijer et al 2004 - PCI	114	69.8	16.4		55	70.5	18.1	
Lange et al 2006 –CA	103	13.1±8.5	1.7±1.4	32±39	92	15.1±8.4	2.8±2.1	64±55
Lange et al 2006 -PCI	48	51±29.4	10.4±6.8	110±115	54	46.3±28.7	11.4±8.4	166±188

Radiation exposure

- Operator experience
- Fluoroscopy time
- Patient radiation dose (dose-area product)
- Operator exposure (mSv)

Operator radiation exposure during elective diagnostic coronary angiogram & Intervention by TFA or TRA (single operator, RCT)

Radiation Protection and catheter length

TFA:

side shield and upper protective shield 85 cm diagnostic catheters

TRA:

side shield only -for uninhibited hand movement of the operator 125 cm diagnostic catheters

Detection of radiation:

dosimeter at the breast pocket on the outside of the lead apron operator exposure (mSv) fluoroscopy time (min) dose-area product (Gy·cm²)

Fluoroscopy Time and Radiation Measurements (TFA vs. TRA, single operator)

	Femoral	Radial	Р
Coronary angiography (n)	103	92	
Fluoroscopy time (min)	1.7 ± 1.4	2.8 ± 2.1	< 0.001
Dose-area product (Gy cm2)	13.1 ± 8.5	15.1 ± 8.4	< 0.05
Radiation exposure (mSv)a	32 ± 39	64 ± 55	< 0.001
Percutaneous intervention (n)	48	54	
Fluoroscopy time (min)	10.4 ± 6.8	11.4 ± 8.4	NS
Dose-area product (Gy cm2)	51.0 ± 29.4	46.3 ± 28.7	NS
Radiation exposure (mSv)	110 ± 115	166 ± 188	< 0.05

 Rt. radial access increases radiation exposure for patients and operators

Left vs. Right Radial approach and Procedural times

Sciahbasi A, TALENT study. Am Heart J. 2011 Jan;161(1):172-9.

(i)

Sciahbasi A, TALENT study. Am Heart J. 2011 Jan;161(1):172-9. Yonsei university, Wonju College of Medicine, Wonju Christian Hospital

Sciahbasi A, TALENT study. Am Heart J. 2011 Jan;161(1):172-9.

()

Sciahbasi A, TALENT study. Am Heart J. 2011 Jan;161(1):172-9. Yonsei university, Wonju College of Medicine, Wonju Christian Hospital

Operator radiation exposure (Lt vs. Rt radial a)

Total 390 patients 5 different sites dosimeters were analyzed (left wrist, shoulder, thorax ouside the lead apron, throax under the lead apron, thyroid)

Lt radial approach for coronary procedures is associated with similar radiation dose for operators at the body, shoulder, or thyroid level, with a possible significant advantage at the wrist. Sciahbasi A, et al. Am J Cardiol. 2011; Epub ahead of print. Yonsei university, Wonju College of Medicine, Wonju Christian Hospital

Contents

1. Radiation exposure

2.Learning curve

3. Anatomical consideration

4. Procedural complexity

Learning curve (Femoral to Radial)

Variable	TF Access $(n = 340)$	TR Access $(n = 661)$	p Value
Total procedure duration (minutes)			
Radial experts	24	20.5	NS
Non-radial experts	22	27	< 0.001
Total fluoroscopic time (minutes)			
Radial experts	4.4	4.5	NS
Non-radial experts	3.6	6.2	< 0.001
Total contrast volume (ml)			
Radial experts	120	108	< 0.001
Non-radial experts	140	119	< 0.001

Figure 1. Trends of total procedural (*crosses*) and fluoroscopic (*gray bars*) times for radial experts and total procedural (*diamonds*) and fluoroscopic (*black bars*) times for non-radial experts. Values are medians. Qtr = quarterly interval over 12 months.

Period (quartiles)	Procedure Time (minutes)	Fluoroscopic Time (minutes)	Contrast Volume (ml)
First 3 months			
Non-radial experts $(n = 28)$	32	8	113
Radial experts $(n = 102)$	22	4.4	115
p Value	< 0.001	0.02	NS
Second 3 months			
Non-radial experts $(n = 54)$	30	7.2	110
Radial experts $(n = 104)$	20	4.8	105
p Value	< 0.001	< 0.001	NS
Third 3 months			
Non-radial experts ($n =$	26	6.2	121
101)			
Radial experts $(n = 78)$	19	4.3	108
p Value	NS	0.02	NS
Fourth 3 months			
Non-radial experts (n =	26	5.2	120
135)			
Radial experts $(n = 59)$	19	45	104
p Value	NS	NS	NS

Technical learning curve is needed

Looi JL et al. *Am J Cardiol.* 2011;Epub ahead of print.

Experience and outcomes

		TR-PCI Operator Experience			
	1–50 (n=655)	51–100 (n=344)	101–150 (n=213)	151–300 (n=141)	Control (n=319)
TR-PCI failure*	43 (7)	10 (3)	5 (2)	5 (3)	6 (2)
No. guides†	1.4±1	1.4±1	1.3±1	1.3±1	1.3±1
Contrast volume, mL‡	180±79	174±79	170±79	157±75	168±79
Fluoroscopy time, min§	15±10	14±10	13±10	11±8	12±9

All values are mean ± SD or n (%). Abbreviation as in Table 1.

*Analyzed by repeated-measures logistic regression model (P=0.007 [1-50 vs 51-100], P=0.01 [1-50 vs control]).

+Analyzed by Poisson regression model (P=0.90).

 \pm Analyzed by repeated-measures linear regression model on log-transformed contrast volume with Tukey adjustment for multiple comparisons (P=0.007 [overall], P=0.02 [1–50 vs 151–300], P=0.05 [1–50 vs control]).

§Analyzed by repeated-measures linear regression model on log-transformed fluoroscopy time with Tukey adjustment for multiple comparisons (P=0.003 [overall], P=0.04 [1–50 vs 101–150], P=0.02 [1–50 vs control]).

Left vs. Right Radial a. (TALENT study)

Total 1,467 patients randomized to Lt or Rt radial artery 3 Stages : **0-100 procedures (Stage 1), 101-200 (Stage 2), >200 (Stage 3)** Primary endpoint : fluoroscopic time during the 3 stages

The left radial approach is associated with a shorter learning curve compared with the right radial approach.

1. Radiation exposure

2. Learning curve

3.Anatomical consideration

4. Procedural complexity

Causes of Transradial Approach PCI Failure

Radial Artery Loop

Guidewire-induced Dissection Severe Spasm

Severe Subclavian Tortuosity

Dehghani, P. et al. J Am Coll Cardiol Intv 2009;2:1057-1064 Yousei university, Wonju College of Medicine, Wonju Christian Hospital

TRA Failure in Low (8%) to Intermediate (42%) Volume Operators

Overall Failure rate: 4.7% (N=2,100)

Table 4. Mechanism and Causes of Transradial PCI Failure ($n = 98$)				
Failure of arterial access				
Inadequate arterial puncture	13 (13)			
Failure to advance catheter to ascending aorta				
Radial artery spasm	33 (34)			
Radial artery dissection	10 (10)			
Radial artery loop/tortuosity	6 (6)			
Radial artery stenosis	1 (1)			
Failure to complete PCI due to lack of guide support				
Subclavian tortuosity	18 (18)			
Inadequate guide backup support	17 (17)			
Values are n (%).				

PCI = percutaneous coronary intervention.

Causes of TRI failure

			TR-PCI Operator Experience			
Cause	Total (n=69)	1–50 (n=43)	51–100 (n=10)	101–150 (n=5)	151–300 (n=5)	Control (n=6)
Radial artery spasm	26 (38)	15 (35)	5 (50)	1 (20)	1 (20)	4 (66)
Subclavian tortuosity	11 (16)	7 (16)		2 (40)	1 (20)	1 (17)
Inadequate guide support	11 (16)	8 (18)	1 (10)	2 (40)		
Inadequate arterial puncture	7 (10)	6 (14)	1 (10)			
Radial artery loop	5 (7)	4 (9)	1 (10)			
Need for contralateral injection	2 (3)		1 (10)		1 (20)	
Inadequate guide engagement	2 (3)	1 (2)	1 (10)			
Radial artery dissection	1 (1)	1 (2)				
Radial artery perforation	1 (1)				1 (20)	
Radial artery thrombus	1 (1)				1 (20)	
Radial artery stenosis	1 (1)	1 (2)				
Unknown	1 (1)					1 (17)

Influences of Radial a. tortuosity

	RA tortuosity				
and the second of the	No (n=1141)	Yes (n=50)			
Age (years)	59.7±10.2	66.9±7.8*			
BSA (m ²)	1.65±0.17	1.67±0.15			
T PT (min)	21.8±11.2	26.0±9.92*			
VAT (min)	2.95±3.11	3.34±3.58			
FT (min)	5.82±4.12	7.14±3.6**			

Radial artery tortuosity was associated with old age and prolonged procedure time

TPT : total procedure time

VT : vascular access time

FT : fluoroscopy time

Radial a. anomaly & procedural outcome

*p Value comparing radial anomaly with normal anatomy provided when relevant; $\dagger p = NS$; $\ddagger p < 0.05$; \$ p < 0.001; $\P p < 0.005$.

**Percentage of failure to radial artery anatomical finding.

Predictors of TRI failure

Lo TS et al. Heart. 2009;95:410-5.

Yonsei university, Wonju College of Medicine, Wonju Christian Hospital

If occurs, fatal complications

Perforation

Compartment syndrome

Necrosis

Impossible TRI case

Weak radial pulsation But patent radial artery Lt subclavian artery total occlusion

Rt subclavian artery total occlusion

Impossible TRI case

Crossover to femoral a.

Intact Rt innominate a. & Lt common carotid a.

Yonsei university, Wonju College of Medicine, Wonju Christian Hosptial

Contents

1. Radiation exposure

2. Learning curve

3. Anatomical consideration

4.Procedural complexity

Understanding the Catheter's Course

TFI preferable situations

- Cardiogenic shock
- Need for hemodynamic support (IABP, EBS)
- CTO lesion
- Left main lesion
- Bifurcation lesion
- Heavily calcified lession → rotational atherectomy
- Tortuous upper extremity vessels

Contraindications for radial access

- Abnormal Allen's test
- Prev. radial procedures with subsequent known radial occlusion
- Pts had CABG with radial grafts
- Pts with Raynaud's phenomenon
- Dialysis pts (may require new conduit in the future)
- Lesions that requires large >2.0mm Rota burr, CTO with support catheter & simultaneous IVUS guidance
 → recent advances are overcoming the limit of TRI

Future of femoral artery

- Methods and devices for TRI are evolving...
 - Sheathless guiding catheter, Slender system
 - CTO intervention using both transradial approach
 - Left main, Bifurcation PCI through radial artery
- TFI is also evolving for great vessel and valves
 - Endovascular stent graft (Thoracic and Abdominal aorta)
 - TAVI
 - Peripheral intervention
 - Carotid intervention

Thank You for Your Attention

