



Cardiac Output

Myocardial Mass

151

**Cardiac CT applications** 

## **RSNA 2011 - Cardiac Radiology**

- CAD risk assessment and clinical implication
- Myocardial Perfusion and Infarction
  - Stress perfusion CT and DECT
- Heart Failure Multimodality Imaging
- Acute Chest Pain
- Noncoronary Artery Imaging
  - Cardiovascular Morphology (LA, PV)
  - Cardiomyopathy, VHD
  - Cardiac Function
- Cardiac Nuclear Imaging SPECT/ CT and PET/CT

# **Appropriate Use Criteria for Cardiac CT**

#### ACCF/SCCT/ACR/AHA/ASE/ASNC/NASCI/SCAI/SCMR 2010 Appropriate Use Criteria for Cardiac CT. JACC 2010;23:1864-94



Characterization of native and prosthetic cardiac valves Suspected clinically significant valvular dysfunction Inadequate images from other noninvasive methods - A (8)

## Ventricular function

- End-systolic and end-diastolic images for LV volume
- Cine image for LV wall motion
- No indication for performing cardiac MDCT for the sole assessment of ventricular function
- LV functional assessment utilized as an adjunct to coronary CT angiography to obtain additional information on the patient



EF 63%, EDV 158 ml, ESV 58 ml, Myocardial mass 151 g

## **Threshold-based technique**



## Assessment of LV function with 64-slice MDCT: comparison with 2D-TTE (n=126)



SM Ko, et al. Br J Radiol 2010;83:28-34

## Assessment of global function of LV with DSCT in patients with severe arrhythmia (n=54)









Table 2 Results of measurement using DSCT and 2D-TTE (n = 54)

|          | DSCT             |        | 2D-TTE      | Paralan          |            |             |           |
|----------|------------------|--------|-------------|------------------|------------|-------------|-----------|
|          | $Mean \pm SD$    | Range  | 95% CI      | $Mean \pm SD$    | Range      | 95% CI      | r value   |
| EF (%)   | 51.0 ± 11.4      | 25-76  | 47.9-54.1   | $55.8 \pm 11.6$  | 27-76.3    | 52.7-59.0   | P < 0.001 |
| EDV (ml) | $179.5 \pm 98.6$ | 65–516 | 152.6-206.4 | $152.1 \pm 73.8$ | 48.5-406.5 | 131.9-172.2 | P < 0.001 |
| ESV (ml) | 90.7 ± 60.7      | 24-299 | 74.2-107.3  | $69.1 \pm 46.8$  | 21.2-235.4 | 56.4-81.9   | P < 0.001 |
| SV (ml)  | 89.0 ± 48.1      | 31-217 | 75.8-102.1  | 82.9 ± 37.3      | 26.8-213.2 | 72.7-93.0   | P = 0.053 |

Table 3 Pearson's correlation coefficient and Bland-Altman analysis from DSCT and 2D-TTE (n = 54)

| DSCT versus 2D-TTE                         |                            |                 |                                |  |  |
|--------------------------------------------|----------------------------|-----------------|--------------------------------|--|--|
| Pearson's correlation coefficient (all $P$ | < 0.001, except SV = .053) | Mean difference | Limits of agreement (±1.96 SD) |  |  |
| EF (%)                                     | 0.798                      | -4.8            | 9.5/-19.1                      |  |  |
| EDV (ml)                                   | 0.946                      | 27.4            | 100.9/-46.1                    |  |  |
| ESV (ml)                                   | 0.898                      | 21.6            | 76.1/-32.9                     |  |  |
| SV (ml)                                    | 0.891                      | 6.1             | 50.2/-38.1                     |  |  |

SM Ko, et al. Int J Cardiovasc Imaging 2010;26:213-221

## **Evaluation of global left ventricular function with DSCT** in patients with VHD: comparison with CMR (n=112)



|          | DSCT             | CMR               | Mean            | Pearson's                 | <i>P</i> value |  |
|----------|------------------|-------------------|-----------------|---------------------------|----------------|--|
|          | Mean ± SD        | Mean ± SD         | difference      | correlation<br>coeffienct |                |  |
| EDV (mL) | $170 \pm 86.1$   | $187.4 \pm 101.1$ | $16.3 \pm 30.8$ | 0.95                      | < 0.0001       |  |
| ESV (mL) | $61.8 \pm 52.1$  | $70.8 \pm 61.7$   | $8.5 \pm 16.8$  | 0.96                      | < 0.0001       |  |
| SV (mL)  | $107.9 \pm 39.2$ | $117.2 \pm 46.2$  | 8.8 ± 19.3      | 0.90                      | < 0.0001       |  |
| EF (%)   | 66.9 ±9.6        | $65.5 \pm 10.1$   | $-1.4 \pm 4.0$  | 0.92                      | < 0.0001       |  |

SM Ko, et al. Acta Radiologica 2011, minor revision

51M, old MI, chest pain



#### 48M, Ischemic cardiomyopathy



#### 54M, AMI, chest pain



# Ischemic cascade

Transmural Hypoperfusion Subendocardial Hypoperfusion

Ischemia

Stress perfusion (SPECT, MRI)



Time

## **Time Intensity Curve**

Normal Myocardium









64/F chest pain

## **Myocardial Perfusion Imaging**

## Coronary CTA

- No physiological significance of coronary stenosis

## Myocardial perfusion

- Important prognostic indicator for patient outcome in the management of coronary artery disease
- Hybrid imaging using SPECT and coronary CTA
  - Incremental diagnostic value over either modality alone
- Dual-Energy CT (DECT)
  - Detection of obstructive CAD and its hemodynamic effect simultaneously

# Hybrid imaging using SPECT and CTA



Rispler S et al. J Am Coll Cardiol 2007;49:1059-67



George RT, et al. Circ Cardiovas Imaging 2009;2:174-182

## **Stress perfusion CT and CMR**

43M, chest discomfort HTN, hyperlipidemia









# **Dual-Energy CT**

## 51M, ECG abnormality on routine checkup



Ruzsics B, et al. Am J Cardiol 2009;104:318-26

Comparison of DECT of the heart with SPECT for assessment of coronary artery stenosis and of the myocardial blood supply



## 61M, known CAD





## Adenosine stress DECT

#### Iodinated contrast agents

- CT attenuation number directly proportional to the iodine content in tissue

## Adenosine-induced stress perfusion CT

- George RT, et al. JACC 2006;48:153-60
- Kurata A, et al. Cir C 2005;69:550-7
- Blankstein R, et al. JACC 2009;54:1072-84
- Roch-Filho JA, et al. Radiology 2010;254:410-9

→ Promising potential future role in MPI for the detection of myocardial ischemia

Adenosine stress DECT

- Two tubes emit X-ray spectra of different energy level
- Assessment of myocardial blood volume

 $\rightarrow$  Is adenosine-induced stress perfusion DECT useful for evaluation of myocardial ischemia ?



Bastarrika et al. Radiology 2009; 253: 317-38

## Myocardial perfusion imaging using adenosine-induced stress DECT of the heart: comparison with CMR and CCA

#### **Stress DECT performance characteristics**

|                                     | Sensitivity  | Specificity | Accuracy     | PPV          | NPV          |
|-------------------------------------|--------------|-------------|--------------|--------------|--------------|
| <b>CMR</b> ( <b>n</b> = <b>28</b> ) |              |             |              |              |              |
| Segment                             | 0.89         | 0.78        | 0.82         | 0.74         | 0.91         |
| Territory                           | 0.91         | 0.72        | 0.83         | 0.82         | 0.88         |
| CCA (n = 41)                        |              |             |              |              |              |
| Territory<br>Patient                | 0.89<br>0.97 | 0.76<br>0.5 | 0.83<br>0.93 | 0.81<br>0.95 | 0.86<br>0.67 |

Ko SM, et al. Eur Radiol 2011;21:26-35

# 59/M, chest pain



# 55/F, chest pain









Diagnostic Performance of Combined Non-invasive Anatomical and Functional Assessment with DSCT and AIS-DECT for the Detection of Significant Coronary Stenosis (n=45)

| ROC                | 0.798 → 0.893 (p=0.004)                            | Per-Vessel Analysis   |                      |  |
|--------------------|----------------------------------------------------|-----------------------|----------------------|--|
|                    | 100                                                | Before<br>stress DECT | After<br>stress DECT |  |
| Sensitivity<br>(%) | 60                                                 | 91.8                  | 93.2                 |  |
| Specificity<br>(%) | 40 - / / / / / / / / / / / / / / / / / /           | 67.7                  | 85.5                 |  |
| <b>PPV</b> (%)     | DSCT-CA after CT-MPI<br>DSCT-CA before CT-MPI<br>0 | 77                    | 88.3                 |  |
| NPV (%)            | 0 20 40 60 80 100<br>100-Specificity               | 87.5                  | 91.4                 |  |

Ko SM, et al. AJR 2011, Accepted

Ko SM, et al. 2010 RSNA scientific presentation

## 59 M, chest pain







## **Time Intensity Curve**



time



nfarcted Myocardium

Contrast injection

Ischemic Myocardium

> 10 min

**First-Pass perfusion** 

**Delayed Enhancement**
# **Myocardial perfusion and viability**



63/M, AMI

# 66/M, health check-up





# 64M, Old MI



#### 72/M, AMI



- Low-dose MDCT late-scan reliably depicts size and transmural extent of microvascular occlusion and late enhancement in AMI
- Radiation dose and contrast material
- Clinical data are currently too limited to allow clinical recommendations on the use of CT for the assessment of perfusion and viability
  Ko SM, et al. KJR 2007;8:94-102
  Ko, et al. Clin Radiol 2006;61:417-422

# Valvular heart disease

- In 2004, 99,000 valve replacement procedure and overall in-hospital mortality rate of 5.1% in USA
- Increasing number of valve surgery (4%-7% annually) d/t aging population with an increasing prevalence of degenerative VHD





Aortic stenosis

 M/C indication for valve surgery

 Imaging modalities - Echo, CMR, CT



# Vital data of VHD patients



## Valve morphology

- number of leaflets, integrity of leaflets and tendinous chords, pathologic features, perivalvular morphology

# Valve function

- opening and coaptation pattern, valve orifice/valve circumference, mean/peak systolic flow + calculation of transvalvular gradient, regurgitant flow/fraction

## Ventricular function

- volumes, systolic/diastolic function, wall mass, regional wall motion

- Additional information
  - great vessel, thrombi, CAD, MI, myocardial scarring



# **BAV** with ASR





# **Cardiac Valves: CT**

- Excellent spatial resolution and improved temporal resolution
  - valve morphology, motion, and cusps excursion/ apposition, and stenosis and regurgitant severity
- Valvular calcification, aorta abnormality, coronary artery anomaly or stenosis
- Limitation in daily routine
  - limited temporal resolution (70-175 ms)
  - Iodinated contrast media
  - Ionizing radiation
  - No functional information about valve disease severity



# Valve morphology assessment



Table 1. Assessment of Aortic and Mitral Valve Stenosis and Regurgitation With MDCT

| Authors (Ref. #)                                 | Patients<br>(n) | Referral Reason      | CT<br>Technique | Collimation<br>(mm) | Comparison<br>Technique | Correlation                                                                                           | Bland-Altman,<br>Mean Difference<br>(Limits of Agreement) |
|--------------------------------------------------|-----------------|----------------------|-----------------|---------------------|-------------------------|-------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|
| Aortic valve stenosis<br>(correlation: AVA)      | (,              |                      | . centrique     | ()                  | realinque               | Concession                                                                                            | (Linito of Agreenent)                                     |
| Feuchtner et al. (21)                            | 46<br>(30 AS)   | Pre-operative (CABG) | 16-slice        | 16	imes 0.75        | TTE                     | r = 0.89, p < 0.001                                                                                   | 0.04 (-0.20, 0.29)                                        |
| Alkadhi et al. (22)                              | 40<br>(20 AS)   | Coronary angiography | 16-slice        | 16	imes 0.75        | TTE/TEE                 | $\begin{array}{l} \text{TTE: } r = 0.95, p < 0.001 \\ \text{TEE: } r = 0.99, p < 0.001 \end{array}$   | TTE: 0.06 (-0.15, 0.26)<br>TEE: -0.08 (-0.32, 0.16)       |
| Bouvier et al. (23)                              | 103<br>(30 AS)  | Coronary angiography | 16-slice        | 16 	imes 0.625      | TTE/TEE*                | N/A                                                                                                   | -0.07 (-0.40, 0.25)                                       |
| Piers et al. (24)                                | 30 AS           | N/A                  | EBCT            | N/A                 | TTE                     | r = 0.60, p < 0.01                                                                                    | 0.51 (-0.39, 1.41)                                        |
| Laissy et al. (25)                               | 40 AS           | Pre-operative (AVR)  | 16-slice        | 16	imes 0.4         | TTE                     | r = 0.77, p < 0.001                                                                                   | 0.06 (-0.23, 0.35)                                        |
| Habis et al. (26)                                | 52 AS           | Pre-operative (AVR)  | 64-slice        | 64	imes 0.6         | TTE                     | r = 0.76, p < 0.001                                                                                   | 0.13 (-0.35, 0.61)                                        |
| Feuchtner et al. (27)                            | 36 AS           | Coronary angiography | 64-slice        | 64 	imes 0.6        | TTE/TEE†                | $\begin{array}{l} \mbox{TTE: } r = 0.88,  p < 0.001 \\ \mbox{TEE: } r = 0.99,  p < 0.001 \end{array}$ | TTE: 0.06 (-0.35, 0.47)<br>TEE: -0.13 (-1.02, 0.76)       |
| Aortic valve regurgitation<br>(correlation: ROA) |                 |                      |                 |                     |                         |                                                                                                       |                                                           |
| Feuchtner et al. (28)                            | 71<br>(48 AR)   | Several‡             | 16-slice        | 12 	imes 0.75       | TTE                     | r = 0.95, p < 0.001                                                                                   | N/A                                                       |
| Jassal et al. (29)                               | 64<br>(30 AR)   | Coronary angiography | 64-slice        | 64 	imes 0.6        | TTE                     | r = 0.79, p < 0.001                                                                                   | N/A                                                       |
| Alkadhi et al. (30)                              | 30 AR           | Several§             | 64-slice        | 64	imes 0.6         | TTE                     | r = 0.84, p < 0.001                                                                                   | N/A                                                       |
| Mitral valve stenosis<br>(correlation: MVA)      |                 |                      |                 |                     |                         |                                                                                                       |                                                           |
| Messika-Zeitoun et al. (31)                      | 29 MS           | N/A                  | 16-slice        | N/A                 | TTE                     | r = 0.88, p < 0.001                                                                                   | 0.20 (-0.14, 0.54)                                        |
| Mitral valve regurgitation<br>(correlation: ROA) |                 |                      |                 |                     |                         |                                                                                                       |                                                           |
| Alkadhi et al. (32)                              | 44<br>(19 MR)   | Coronary angiography | 16-slice        | 16 	imes 0.75       | TEE                     | r = 0.81, p < 0.001                                                                                   | N/A                                                       |

Tops LF, et al. J Am Coll Cardiol Img 2008;1:94-106

#### Aortic valve area measurement



#### Mitral valve area measurement



MVA Planimetry 1.19 cm2



## Which plane is correct for AV area?



CMR - Vmax 2.2 m/sec, AVA 0.98 cm2, TTE - Vmax 2.8 m/sec, AVA (2D/CE 1.4 cm2)

# **Degenerative calcified AS**



Oblique 2.06mm Average

# **BAV** with AS



# **BAV** with AR









Ko SM, et al. AJR 2012, Accepted

Int J Cardiol. 2006 Nov 18;113(3):320-6. Epub 2006 Jan 18.

#### Echocardiographic anatomy of ascending aorta dilatation: correlations with aortic valve morphology and function.

Della Corte A, Romano G, Tizzano F, Amarelli C, De Santo LS, De Feo M, Scardone M, Dialetto G, Covino FE, Cotrufo M. Department of Cardiothoracic Sciences, Second University of Naples, Department of Cardiovascular Surgery and Transplants, Monaldi Hospital, Naples, Italy, aledellacorte@libero.it

Clin Res Cardiol. 2009 Feb;98(2):114-20. Epub 2008 Dec 12.

#### Dilatation of the ascending aorta in bicuspid aortic valve disease: a magnetic resonance imaging study.

Debl K, Djavidani B, Buchner S, Poschenrieder F, Schmid FX, Kobuch R, Feuerbach S, Riegger G, Luchner A. Klinik und Poliklinik für Innere Medizin II, Universitätsklinikum Regensburg, F.J.-Strauss-Allee 11, 93042 Regensburg, Germany, kurt.debl@klinik.uni-regensburg.de

#### Am Heart J. 2004 Apr;147(4):736-40.

Severe BAV stenosis

#### Dilatation of the aorta in pure, severe, bicuspid aortic valve stenosis.

Morgan-Hughes GJ, Roobottom CA, Owens PE, Marshall AJ. Department of Cardiology, South West Cardiothoracic Centre, Plymouth NHS Trust, Plymouth, United Kingdom, hughesgj@talk21.com



STJ T

BRPA

в



Severe TAV stenosis

45 40 35

5

B T

Diameter (mm)

#### Incidence and location of ascending aorta dilatation in BAV and TAV using DSCT (n = 88)

| Characteristic      | BAV (n = 53) | TAV (n = 35) | P value |
|---------------------|--------------|--------------|---------|
| AA diameter ≤ 45 mm | 31 (58.5%)   | 33(94.3%)    | 0.0006  |
| AA diameter > 45 mm | 22 (41.5%)   | 2 (5.7%)     |         |
| Root                | 2            | 1            |         |
| Tubular             | 19           | 1            |         |
| Root + Tubular AA   | 1            | 0            |         |

Ko SM, et al. Int J Cardiovasc Imaging 2011, in press





Ko SM, et al. RSNA 2011, oral presentation

# **Rheumatic VHD**



# LA thrombus in patients with rheumatic MS



 LAA spontaneous echo by TEE - strong predictor of thromboembolic risk in patients with MS
 Two-phase 64-MDCT - 100% Sens and 98% Spe for the detection of thrombus in LAA Hur J, et al. Radiology 2009;251:683-90

#### Two-phase DSCT for the detection of LAA thrombus in patients with MS and AF

#### Negative





Early phase

Late phase

#### Spontaneous echo contrast



#### Thrombus



Early phase

Late phase



Quantitative analysis using LAA-AA attenuation ratio on late-phase CT images

# Concordance between DSCT and intraoperative finding for detection of thrombus in LAA (n=106)

|             | Intraoperative Findings |             |  |  |  |
|-------------|-------------------------|-------------|--|--|--|
| CT finding  | Thrombus                | No thrombus |  |  |  |
| Thrombus    | 27                      | 6           |  |  |  |
| No thrombus | 0                       | 73          |  |  |  |

 Inter-rater agreement (k=0.86)
 Sensitivity 100%, Specificity 92.4%, Accuracy 94.3% Positive predictive value 81.8.2%, Negative predictive value 100%

> Ko SM, et al. RSNA 2011, scientific presentation Ko, SM, et al. ESCR 2011, poster presentation

71F



# 63/M, dyspnea,













# **MVP** due to P1 chorda rupture



63/M, dyspnea

# Infective endocarditis



#### Infective endocarditis F/45 CC : dyspnea , 15 days ago







# Assessment of Prosthetic Valve and Valvuloplasty using MDCT



## **Aortic valvuloplasty**









Phase %080 W/L:1001/288 Oblique 2.06mm Average

Phase %070 W/L:1001/228 Oblique 2.06mm Average

Eur Radiol. 2009 Apr;19(4):857-67. Epub 2008 Nov 27.

## Correctness of multi-detector-row computed tomography for diagnosing mechanical prosthetic heart valve disorders using operative findings as a gold standard.

Tsai IC, Lin YK, Chang Y, Fu YC, Wang CC, Hsieh SR, Wei HJ, Tsai HW, Jan SL, Wang KY, Chen MC, Chen CC. Department of Radiology, Taichung Veterans General Hospital, Taichung, Taiwan, Republic of China. sillyduck.radiology@gmail.com

#### Abstract

The purpose was to compare the findings of multi-detector computed tomography (MDCT) in prosthetic valve disorders using the operative findings as a gold standard. In a 3year period, we prospectively enrolled 25 patients with 31 prosthetic heart valves. MDCT and transthoracic echocardiography (TTE) were done to evaluate pannus formation, prosthetic valve dysfunction, suture loosening (paravalvular leak) and pseudoaneurysm formation. Patients indicated for surgery received an operation within 1 week. The MDCT findings were compared with the operative findings. One patient with a Björk-Shiley valve could not be evaluated by MDCT due to a severe beam-hardening artifact; thus, the exclusion rate for MDCT was 3.2% (1/31). Prosthetic valve disorders were suspected in 12 patients by either MDCT or TTE. Six patients received an operation that included three redo aortic valve replacements, two redo mitral replacements and one Amplatzer ductal occluder occlusion of a mitral paravalvular leak. The concordance of MDCT for diagnosing and localizing prosthetic valve disorders and the surgical findings was 100%. Except for images impaired by severe beam-hardening artifacts, MDCT provides excellent delineation of prosthetic valve disorders.



# Prosthetic heart valve dysfunction (thrombus formation)



## Prosthetic heart valve dysfunction (Pannus formation)



# Conclusion

- Integration of myocardial CT perfusion and delayed enhanced CT is capable of detecting myocardial ischemia and infarction.
- Cardiac CT is promising in selected VHD as adjunct to echocardiography, particularly AS and mechanical valve.
- CT measurements of global LV function using thresholdbase technique are highly reproducible and accurate.
- Cardiac CT has a potential for the "one-stop shop" for the evaluation of ischemic heart disease.










## LEFT VENTRICULAR FUNCTION

| Parameter            | Measured Values |
|----------------------|-----------------|
| Ejection Fraction    | 63              |
| End Diastolic Volume | 158             |
| End Systolic Volume  | 58              |
| Stroke Volume        | 100             |
| Cardiac Output       | -               |
| Myocardial Mass      | 151             |



