
Current Topics in Hypertension

- BP variability vs. average daily BP -

조선의대 정중화



# Riva Rocci sphygmomanometer - Mercury; SBP -



Gazetta Medical di Torino 1896;47:901-6 and 1001-17.

### HBP invariably lower than OBP

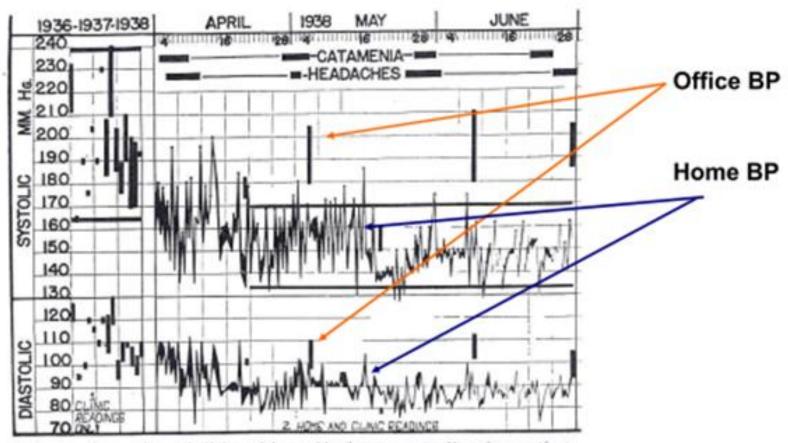
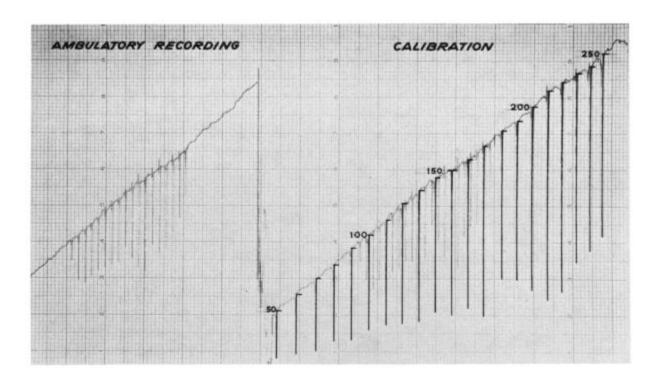




Fig. 1.—Comparison of clinic and home blood pressure readings in a patient with essential hypertension.

### ABPM; more than 40 yrs ago





### Factors affect the BP measurement result

| Aspect      | Different approaches affecting the BP assessment                                 |
|-------------|----------------------------------------------------------------------------------|
| Setting     | Office, work, ambulatory, home                                                   |
| Time        | Daytime, nighttime, nocturnal dip, morning, evening, morning surge, postprandial |
| Observer    | Doctor, nurse, technician, relative, self-measurement, automated                 |
| Device      | Mercury, aneroid, hybrid, oscillometric                                          |
| Posture     | Basal, lying, seated, standing, exercise                                         |
| Reading     | First reading, first day, first visit, several measurements                      |
| Calculation | Average, variability, reactivity, maximum                                        |

### **Definitions**

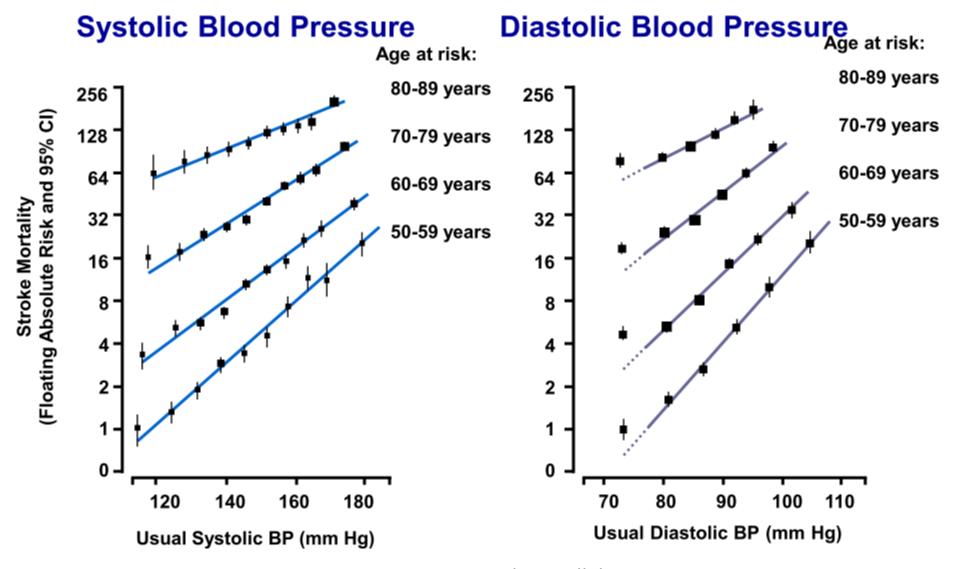
#### Usual blood pressure

The theoretical <u>true underlying level of blood pressure</u>, <u>which cannot be measured with total precision</u>, but which is widely considered to be the most important component of blood pressure, determining its adverse effects and accounting for the benefits of antihypertensive drugs. Risk relations between measurements of blood pressure and risk of vascular events can be corrected for inaccuracy in estimation of usual blood pressure by adjustment for regression-dilution bias.<sup>5,6</sup>

#### Mean blood pressure

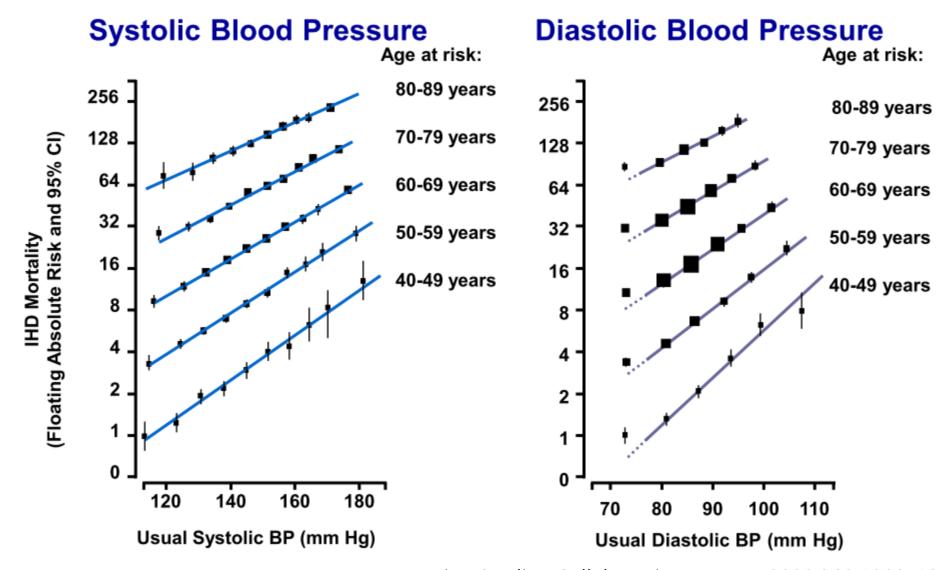
The average of several readings of either systolic or diastolic blood pressure (as opposed to mean arterial pressure). Readings can be derived from several clinic vists, home measurement, or ambulatory monitoring, although all these techniques will result in different values. Modelling studies show that at least seven to ten measurements of blood pressure on different clinic visits (and ideally many more) are needed for mean blood pressure to be an accurate estimate of usual blood pressure.<sup>7</sup>

#### Blood-pressure variability


The variation in blood pressure with time, either the overall variability during a period of time (SD or coefficient of variation), with or without adjustment for time trends in underlying mean blood pressure (residual SD), or the average absolute difference between adjacent readings (successive variation). A Variability has mainly been studied during periods of hours on ambulatory monitoring, but can also be measured over minutes during a clinic visit, or over days, weeks, and months with home measurements or repeated clinic visits (webappendix pp 5–9). These approaches yield different estimates of variability, which are only partly correlated, and which might have different primary determinants. Extent of variability is usually positively associated with mean blood pressure, but independent transformations can be generated. Measurements of variability in blood pressure are generally less precise than are estimates of usual blood pressure, and risk relations could in theory be adjusted for error in estimation of usual variability.

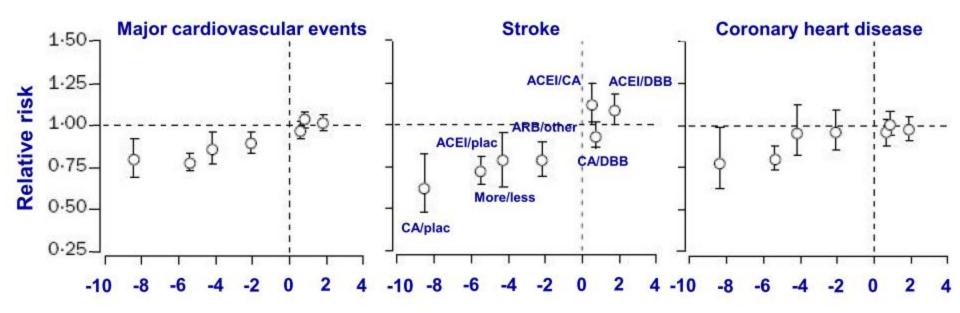
#### Blood-pressure instability

Describes transient fluctuations in blood pressure, usually in response to a specific stimulus, such as change in posture, emotional stress, or pain. Instability contributes to overall variability and will often have similar clinical associations, such as arterial stiffness and baroreceptor dysfunction. However, instability differs from variability in that it refers specifically to sudden changes in blood pressure, the consequences of which might differ from more gradual fluctuations.

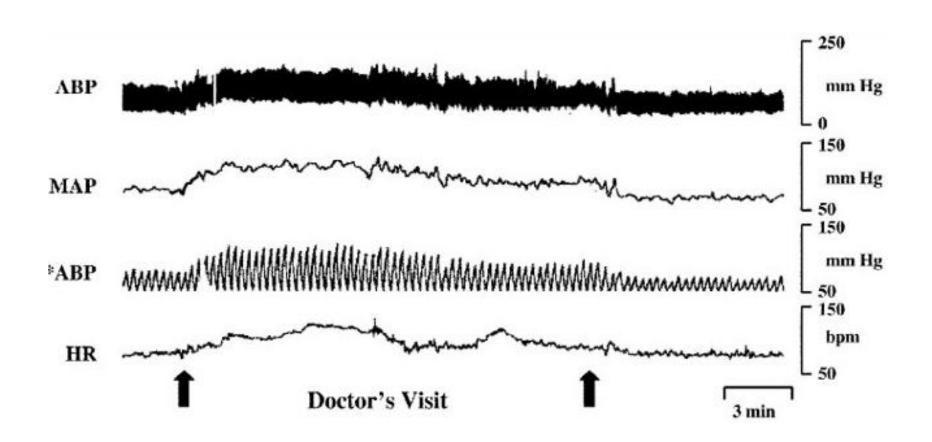

# HIGH BP MEASURED IN THE DOCTOR'S OFFICE

## Stroke mortality linked to BP levels : meta-analysis of 61 prospective studies

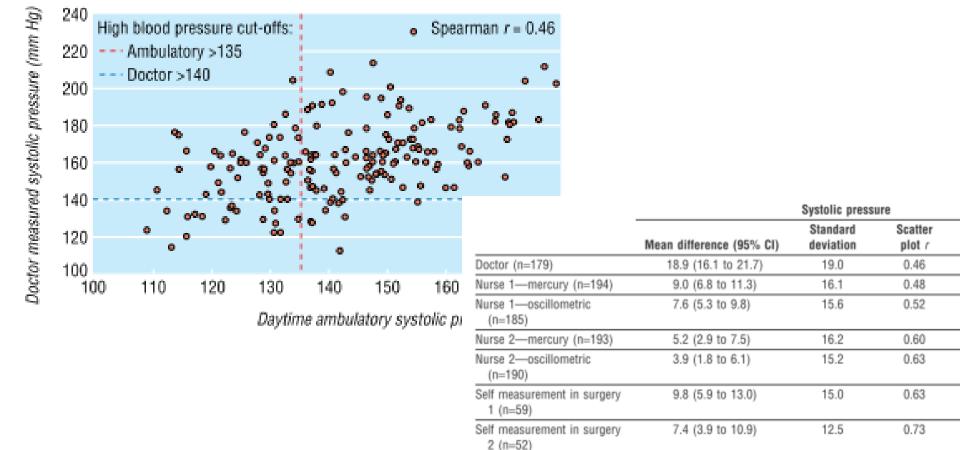



Prospective Studies Collaboration. Lancet 2002;360:1903-13.

## IHD mortality linked to BP levels: meta-analysis of 61 prospective studies




Prospective Studies Collaboration. Lancet 2002;360:1903-13.


## Clear benefit with more BP lowering Prospective meta-analysis of 15 trials



## Major problems associated with conventional clinic BP measurement



### OBP vs. ABP and HBP



Home measurement (n=190)

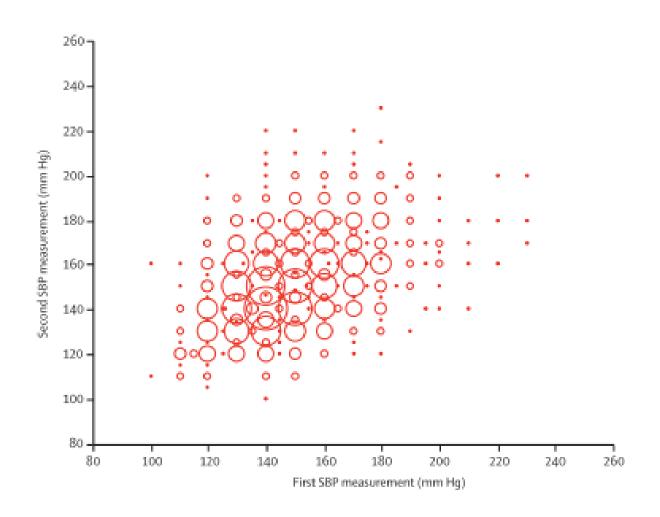
measurements (n=182)

Last three clinic

BMJ 2002;325:254-8.

12.8

15.5


0.75

0.47

4.6 (2.7 to 6.4)

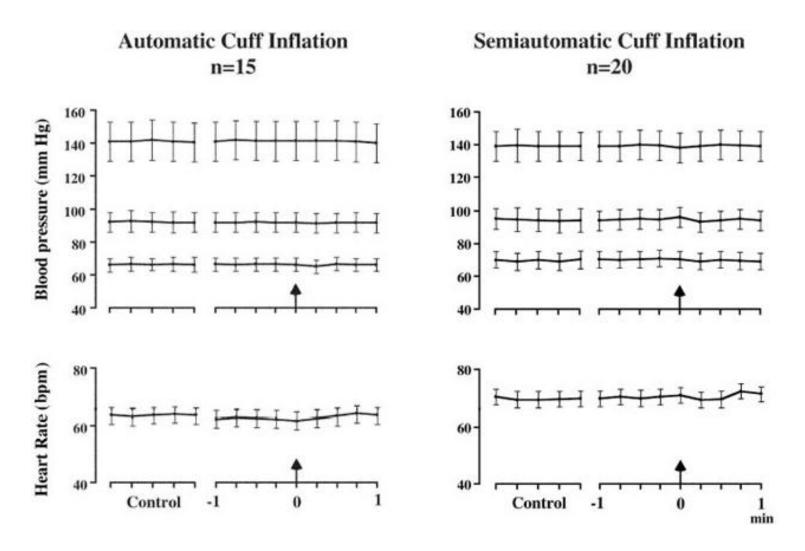
19.9 (17.6 to 22.1)

### SBP at one clinic visit versus the next visit



## **AVERAGE(MEAN) BP**

### Mean BP and usual BP

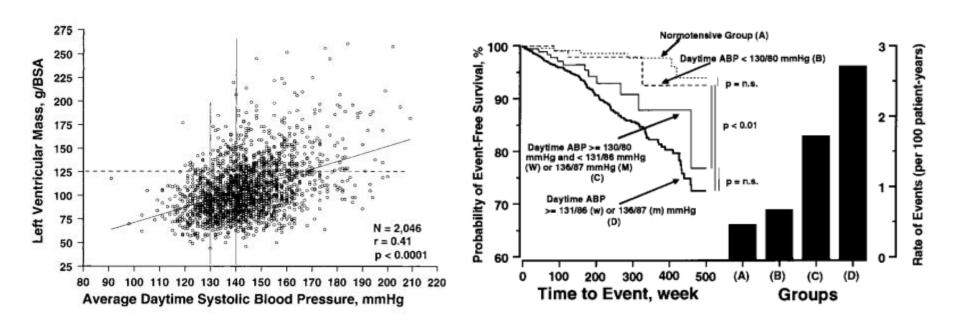

|                | HR for mean SBP  |         | HR for variability in SBP |         |  |
|----------------|------------------|---------|---------------------------|---------|--|
|                | HR (95% CI)      | p value | HR (95% CI)               | p value |  |
| SD SBP         |                  |         |                           |         |  |
| Two readings   | 2-44 (1-53-3-89) | <0.0001 | 1.15 (0.73-1.81)          | 0.55    |  |
| Four readings  | 2-44 (1-39-4-29) | 0.002   | 1.51 (0.86-2.66)          | 0.16    |  |
| Six readings   | 2-49 (1-24-4-97) | 0.01    | 2.02 (0.97-4.22)          | 0.061   |  |
| Eight readings | 1.85 (0.84-4.10) | 0.13    | 6.01 (1.72-20.96)         | 0.005   |  |
| Ten readings   | 1.44 (0.58-3.57) | 0.43    | 13.04 (1.66-102.6)        | 0.015   |  |
| CV SBP         |                  |         |                           |         |  |
| Two readings   | 2-67 (1-74-4-11) | <0.0001 | 1.09 (0.73-1.62)          | 0.67    |  |
| Four readings  | 2-82 (1-67-4-76) | <0.0001 | 1.50 (0.90-2.48)          | 0.12    |  |
| Six readings   | 3-07 (1-62-5-83) | 0.001   | 1.98 (1.05-3.77)          | 0.036   |  |
| Eight readings | 2.68 (1.29-5.56) | 0.008   | 5.00 (1.75-14.30)         | 0.003   |  |
| Ten readings   | 2-26 (0-98-5-17) | 0.055   | 13.05 (1.74-97.66)        | 0.012   |  |
| VIM SBP        |                  |         |                           |         |  |
| Two readings   | 2.86 (1.88-4.36) | <0.0001 | 1-25 (0-86-1-82)          | 0.25    |  |
| Four readings  | 3-18 (1-90-5-33) | <0.0001 | 1.59 (1.00-2.54)          | 0.053   |  |
| Six readings   | 3-70 (1-97-6-94) | <0.0001 | 2-31 (1-26-4-23)          | 0.007   |  |
| Eight readings | 3-70 (1-81-7-56) | <0.0001 | 6.04 (2.14-17.03)         | 0.001   |  |
| Ten readings   | 3.31 (1.46-7.47) | 0.004   | 15.35 (2.08-113.1)        | 0.007   |  |

Every row shows the estimates from a Cox model applied to data from patients who survived for at least n follow-up visits, where n ranges from 2 (3 months) to 10 (3 years). Quintiles were used rather than deciles to provide sufficient group sizes to extend the analysis to ten blood-pressure readings. SBP=systolic blood pressure. HR=hazard ratio. CV=coefficient of variation. VIM=variation independent of mean.

Table 1: Hazard ratios (top vs bottom quintile) for risk of subsequent stroke (ie, after the measurement period) in the UK-TIA trial from a model combining mean SBP and visit-to-visit variability in SBP (SD or CV or VIM), repeated with increasingly precise estimates of both variables

Modeling studies show that at least seven to ten measurements of blood pressure on different clinic visits(and ideally many more) are needed for mean blood pressure to be an accurate estimate of usual blood pressure.

## WCE is not due to arm cuff inflation per se, but to the presence of a physician performing the measurement

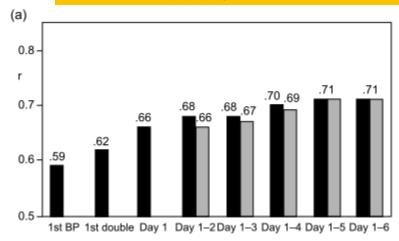


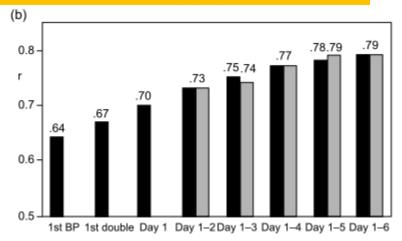

Hypertension 1985;7:597-601.

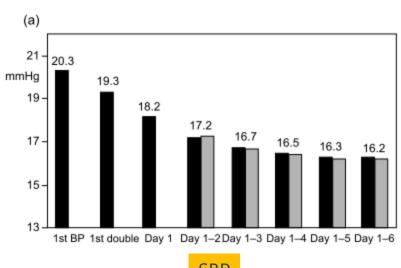
### ABP is lower than OBP

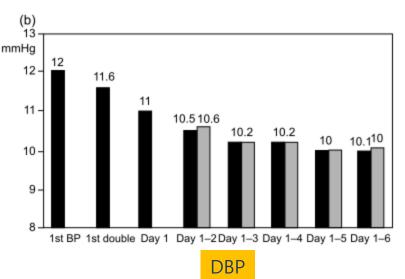
|                                    | Classification of patients |                        |        |                            |        |                           |         |                         |
|------------------------------------|----------------------------|------------------------|--------|----------------------------|--------|---------------------------|---------|-------------------------|
|                                    | Normotension               | Masked<br>hypertension |        | White coat<br>hypertension |        | Sustained<br>hypertension |         | P-value<br>(by χ2 test) |
|                                    | n=2901                     | n=117                  | n=1172 |                            | n=5522 |                           | n=8791  |                         |
| Age                                | 49±15                      | 52±14                  | ***    | 53±15                      | ***++  | 53±13                     | ***++   |                         |
| Male, %                            | 46.5                       | 59.5                   |        | 47.4                       |        | 60.9                      |         | <0.001                  |
| Body mass index, kg/m <sup>2</sup> | 27.3±4.7                   | 27.4±4.2               |        | 28.1±4.6                   | ***+++ | 28.0±4.3                  | ******  |                         |
| Smoking, %                         | 19.7                       | 22.3                   |        | 17.1                       |        | 22.4                      |         | <0.001                  |
| Diabetes mellitus, %               | 13.2                       | 10.4                   |        | 10.7                       |        | 10.4                      |         | <0.001                  |
| Dislipidemia, %                    | 26.4                       | 27.3                   |        | 30.5                       |        | 29.3                      |         | <0.001                  |
| Renal insufficiency, %             | 0.6                        | 0.3                    |        | 0.3                        |        | 0.4                       |         | 0.237                   |
| Cardiovascular disease, %          | 2.8                        | 2.9                    |        | 1.9                        |        | 2.1                       |         | 0.021                   |
| Clinic SBP                         | 125±10                     | 129±7.9                | ***    | 150±12                     | ***+++ | 154±15                    | ******  |                         |
| Clinic DBP                         | 78±7.8                     | 80±7/2                 | ***    | 90±12                      | ***+++ | 94±13                     | ******  |                         |
| Clinic PR                          | 75±12                      | 75±12                  |        | 77±13                      | ***+++ | 77±13                     | ***+++  |                         |
| 24hr SBP                           | 116±7.4                    | 132±10                 | ***    | 120±6.6                    | ***+++ | 137±11                    | ******  |                         |
| 24hr DBP                           | 71±5.8                     | 82±6.9                 | ***    | 72±5.7                     | ***+++ | 84±8.4                    | ******  |                         |
| 24hr PR                            | 72±9/0                     | 74±9.5                 | ***    | 71±9.5                     | *+++   | 74±9.7                    | ****    |                         |
| Daytime SBP                        | 121±8.6                    | 137±11                 | ***    | 125±7.9                    | ***+++ | 142±11                    | ******  |                         |
| Daytime DBP                        | 75±6.9                     | 86±8.1                 | ***    | 77±7.0                     | ***+++ | 88±9.4                    | ******  |                         |
| Daytime PR                         | 77±10                      | 78±11                  | ***    | 76±11                      | *+++   | 78±11                     | ****    |                         |
| Nighttime SBP                      | 108±9.3                    | 123±13                 | ***    | 110±.1                     | ***+++ | 126±14                    | ******  |                         |
| Nighttime DBP                      | 62±6.7                     | 73±8.1                 | ***    | 63±6.5                     | +++    | 74±9.3                    | ******* |                         |
| Nighttime PR                       | 64±9.1                     | 67±9.9                 | ***    | 64±9.4                     | +++    | 66±9.7                    | *****   |                         |

## Prognostic value of ABP; 9 event-based cohort studies





Hazard ratio per 10 mmHg increase of 24-h SBP was 1.27. Hazard ratio per 10 mmHg increase of daytime SBP was 1.17. Several studies did not provide effect estimates for DBP.

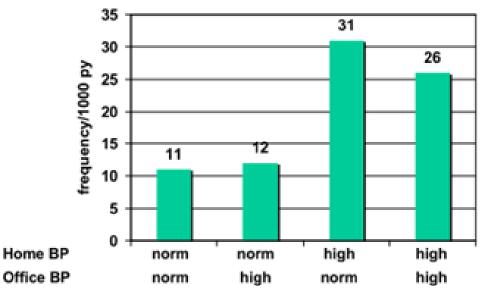

Hypertension 2000;35:844-51. J Hypertens 2008;26:1290-9.


## Number of HBPM needed to ensure a reliable estimate of true BP

### The relationship of HBP with daytime ABP (correlation coefficient *r*)







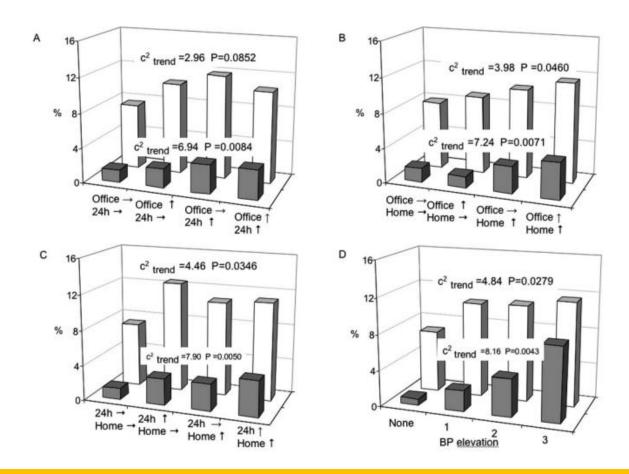



J Hypertens 1998;16:725-31.

## Frequency of CV events according to OBP and HBP levels

#### Normal home BP <135/85 mmHg, normal office BP <140/90 mmHg

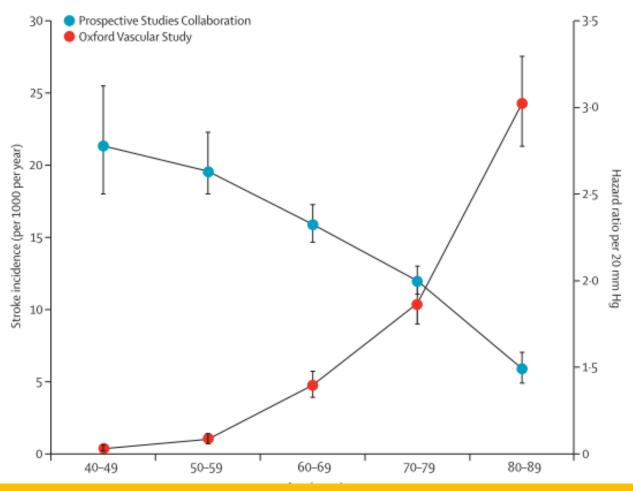



|                        |                               | No. of   |      |    |    |       |                                                     |
|------------------------|-------------------------------|----------|------|----|----|-------|-----------------------------------------------------|
| Study                  | Population Studied            | Subjects | Days | AM | PM | Total | Outcome                                             |
| Ohasama <sup>81</sup>  | Population                    | 1789     | 28   | 1  | 0  | 28    | Strokes and mortality predicted better by HBPM      |
| SHEAF99                | Treated hypertensive patients | 4939     | 4    | 3  | 3  | 24    | CV morbidity and mortality predicted better by HBPM |
| PAMELA82               | Population                    | 2051     | 1    | 1  | 1  | 2     | CV and total mortality predicted better by HBPM     |
| Belgian <sup>100</sup> | Referred                      | 391      | 1    | 3  | 0  | 3     | Combined CV events predicted better by HBPM         |
| Didima <sup>98</sup>   | Population                    | 662      | 3    | 2  | 2  | 12    | CV events predicted by both HBPM and office BP      |

CV indicates cardiovascular.

SHEAF study. JAMA 2004;291:11342.

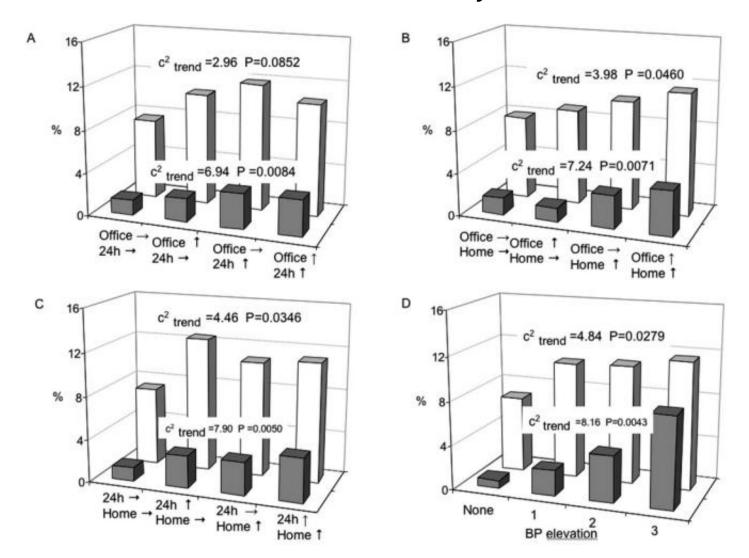
2008 AHA/ASH guideline. Hypertension 2008;52:10-29.


### PAMELA study



SBP level of a CV death risk over 11 yrs of 10%

- 179 mmHg for OBP
- 163 mmHg for HBP
- 157 mmHg for ABP(daytime)


## <u>Predictive value of estimated usual BP falls with age</u> ; <u>Prospective Studies Collaboration</u>



Mean BP is a very powerful risk factor for vascular events, but...

Hypertension 2006;47:846-53.

## WCH and MH are not prognostic innocent ; PAMELA study

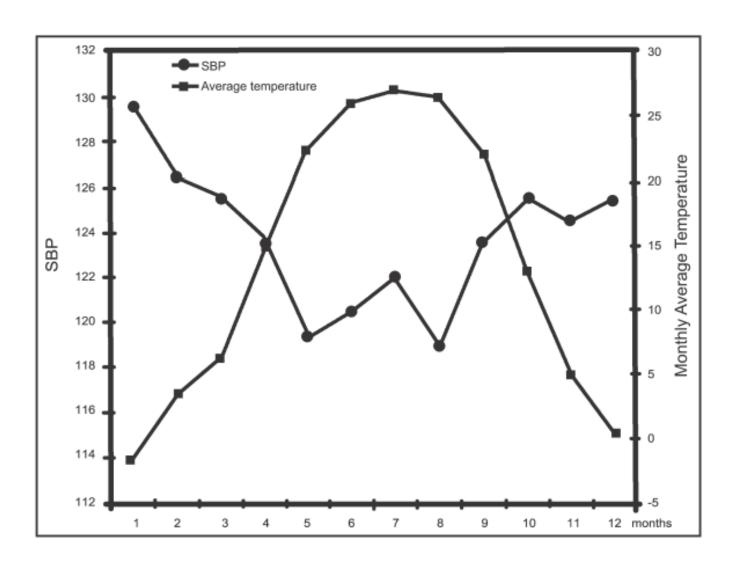


Hypertension 2006;47:846-53.

### High BPV and mean BP

|                                                | UK trial         | Dutch trial      | Pooled*           |  |
|------------------------------------------------|------------------|------------------|-------------------|--|
| Patients with low visit-to-visit variability†  |                  |                  |                   |  |
| Unadjusted baseline SBP                        | 1.58 (1.25-2.00) | 1.35 (0.99-1.85) | 1.50 (1.24-1.80)  |  |
| Estimated usual SBP‡                           | 1.93 (1.38-2.70) | 1.60 (0.98-2.61) | 1.82 (1.38-2.40)  |  |
| Actual mean SBP§                               | 1.72 (1.25-2.35) | 1.68 (1.18-2.39) | 1.70 (1.35-2.15)  |  |
| Patients with high visit-to-visit variability‡ |                  |                  |                   |  |
| Unadjusted baseline SBP                        | 1-30 (1-11-1-52) | 1-15 (0-95-1-40) | 1.24 (1.09-1.40)  |  |
| Estimated usual SBP‡                           | 2.83 (1.51-5.30) | 4.06 (0.57-28.8) | 2·93 (1·61-5·32)¶ |  |
| Actual mean SBP§                               | 1-27 (1-00-1-61) | 1.08 (0.76-1.54) | 1.21 (1.00-1.47)¶ |  |
|                                                |                  |                  |                   |  |

Data are hazard ratio (95% CI). Stroke risk calculation included all strokes after the measurement period (ie, after seventh follow-up visit); however, results were very similar when analysis also included events during and after the measurement period. SBP=systolic blood pressure. TIA=transient ischaemic attack. \*Based on fixed-effect meta-analysis of the two trials. †Low variability includes patients with median variability or lower, and high those greater than the median; within-individual visit-to-visit variability is expressed as a transformation of the SD of measurements made at seven consecutive visits, which is uncorrelated with mean SBP.\* ‡Calculated by adjustment of baseline SBP for regression-dilution bias, with regression-dilution ratios of 0-42 (all patients), 0-70 (low variability), and 0-25 (high variability) in the UK trial and 0-38, 0-64, and 0-10, respectively, in the Dutch trial; ratios were calculated from the baseline measurement and the visit 7 (2-year) measurement. §Based on measurements of SBP made at the first seven consecutive follow-up visits. ¶ p value for comparison of difference between hazard ratios was 0-006.

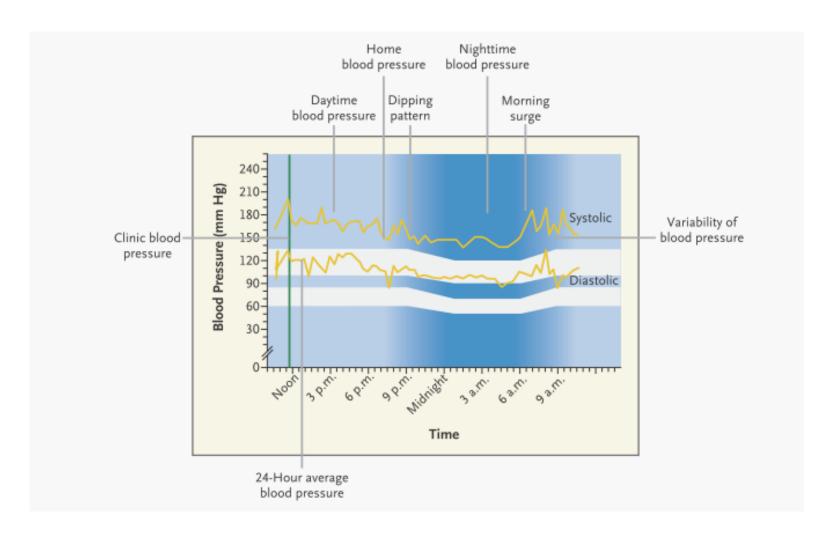

# BLOOD PRESSURE VARIABILITY

# Measures of BP Variability, Instability, and Reativity

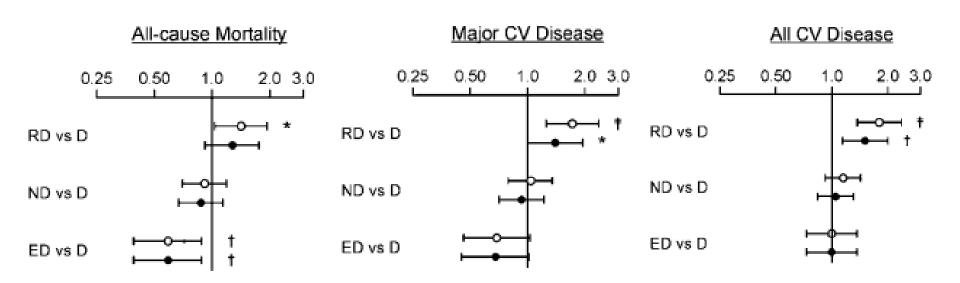
| Variability | Short term: reading-to-reading (ambulatory monitoring)* Medium term: day-to-day (home monitoring)* Long term: visit-to-visit (office measurements)*                                                |
|-------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Instability | Maximum BP: office, home, ambulatory monitoring* Morning BP surge: ambulatory monitoring*                                                                                                          |
| Reactivity  | Physical tests: isometric or isotonic exercise testing,* cold pressor test, tec Mental tests: arithmetic task, reaction time task, psychologic and emotional challenges, mental stressor test, etc |

may carry different clinical implications still poorly understood...

### Seasonal BPV

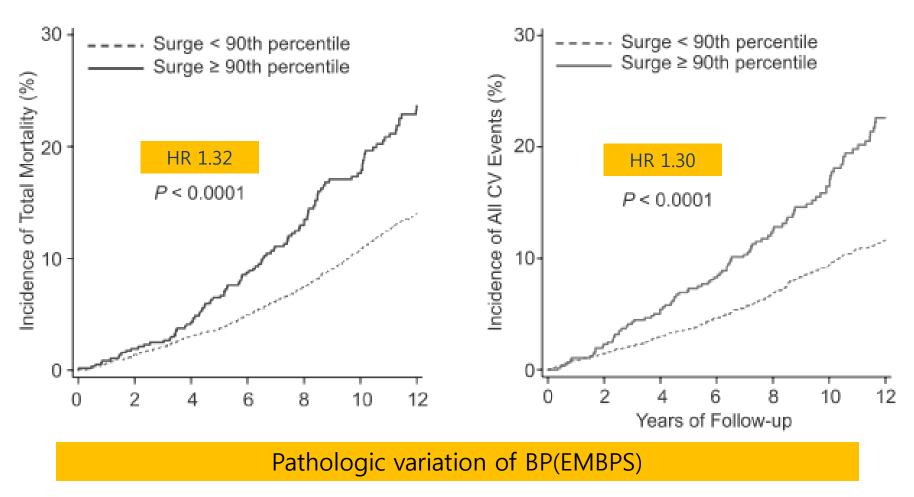



### Factors associated with BPV


- Average BP levels
- Heart rate
- Temperature
- Diabetes
- Smoking
- Increasing age
- Presence of vascular diseases (stiffness)
- Poor compliance with antihypertensives
  - Subclinical cerebral ischemia
  - Increased arterial stiffness
  - Impaired baroreceptor

Circ Res 1971;29:424. Cerebrovasc Dis 1997;7:214-19. Lancet 2010;375:906-15.

# BPV by ABPM; short-term variability




## <u>Dipping pattern and CV outcomes</u>; meta-analysis from 4 prospective studies



Physiologic variation of BP(nocturnal dipping)

# Morning surge and CV events; 5645 subjects from 8 populations (ABP)



Hypertension 2010;55:1040-8.

## BPV in NT, WCH, MHT and SHT ; Spanish ABPM registry

Figure 3. Standard deviation of nighttime SBP for four groups

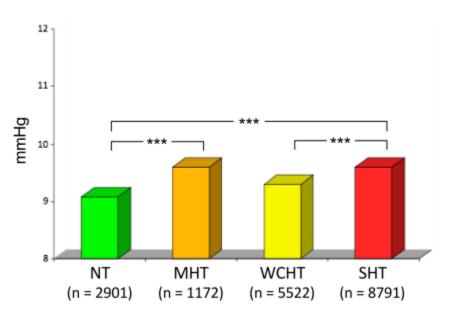
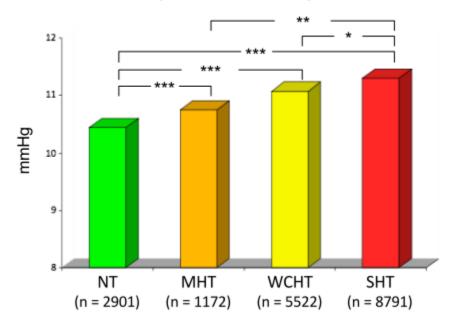
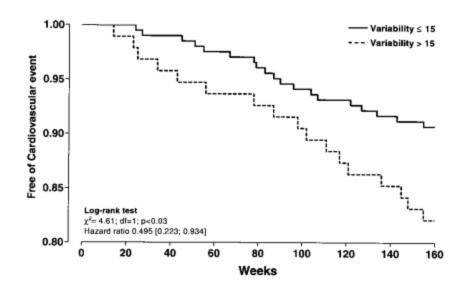
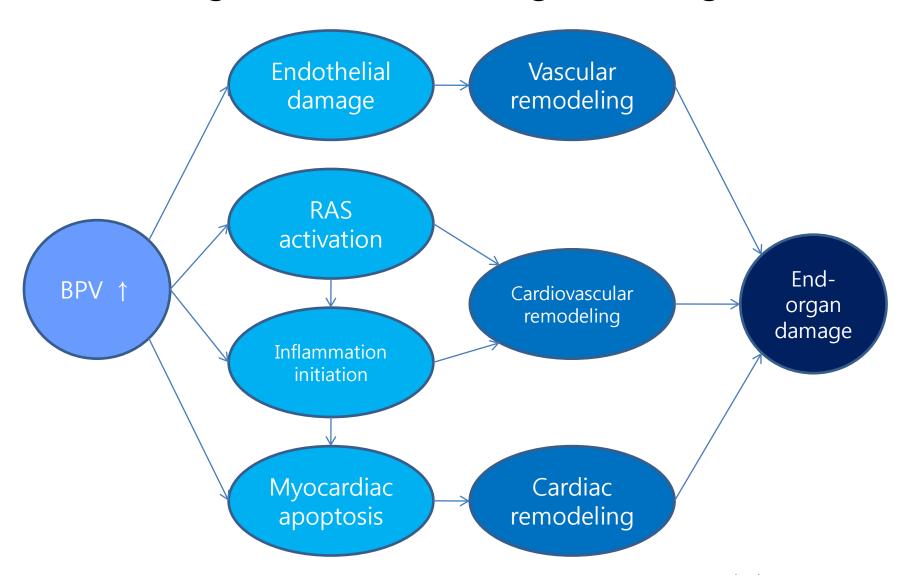




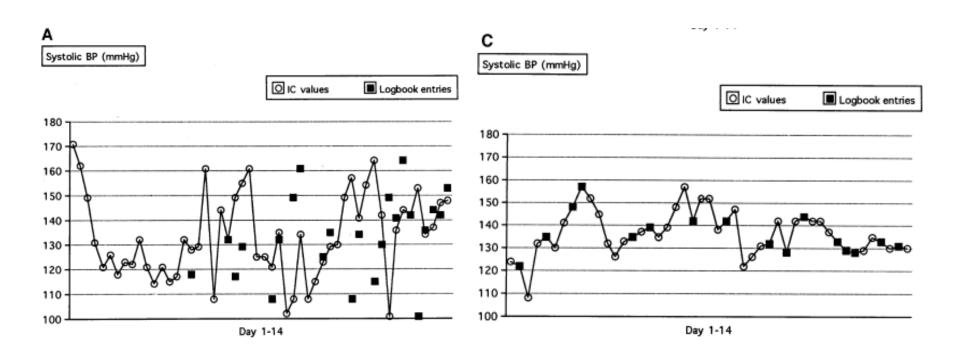

Figure 4. Standard deviation of daytime SBP for four groups




## BPV(SBP;ABP) and carotid atherosclerosis ; independent of average BP

|                                                           | Odds Ratio (95% CI) | Р      |
|-----------------------------------------------------------|---------------------|--------|
| Variability (>15 vs ≤15 mm Hg)                            | 3.9 (1.4-11.1)      | < 0.01 |
| Variation (nighttime blood pressure increase vs decrease) | 1.27 (0.38-4.3)     | NS     |
| Blood pressure (hypertensive vs normotensive)             | 1.17 (0.55-2.07)    | NS     |




Short-term BPV predict organ damage and CV events.

### <u>Possible mechanisms involved in</u> <u>high BPV-induced organ damage</u>



### BPV by HBPM

### ; medium-term variability

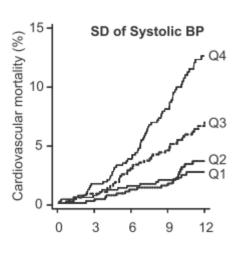


Precision index of 0% Under-reporting of 26% Over-reporting of 5%

Precision index of 100% Under-reporting of 65%

Am J Hypertens 1998;11:1413-7.

### Reproducibility


|                               | Reproducibility Criteria                                 |                                                  |  |  |  |  |  |
|-------------------------------|----------------------------------------------------------|--------------------------------------------------|--|--|--|--|--|
| Blood Pressure<br>Measurement | Test-Retest Correlation Coefficient (Systolic/Diastolic) | SD of<br>Differences<br>(Systolic/<br>Diastolic) |  |  |  |  |  |
| Clinic                        |                                                          |                                                  |  |  |  |  |  |
| 1 visit                       | 0.77/0.76                                                | 11.0/6.6                                         |  |  |  |  |  |
| Ambulatory                    |                                                          |                                                  |  |  |  |  |  |
| 24-H                          | 0.80/0.84                                                | 8.3/5.6                                          |  |  |  |  |  |
| Awake                         | 0.74/0.80                                                | 10.0/6.6                                         |  |  |  |  |  |
| Asleep                        | 0.81/0.79                                                | 9.2/7.0                                          |  |  |  |  |  |
| Home                          | ·                                                        | •                                                |  |  |  |  |  |
| 2 days                        | 0.91/0.86                                                | 6.9/4.7                                          |  |  |  |  |  |

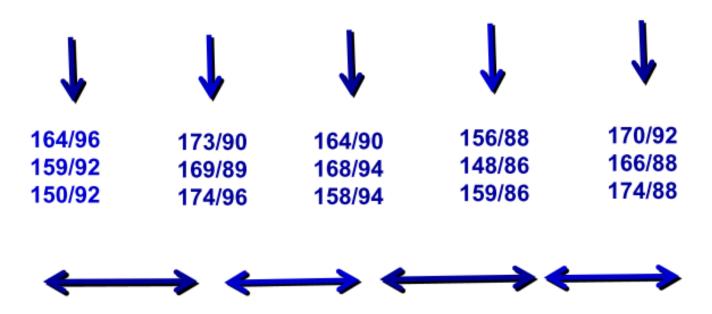
### Maximum value of HBP; a novel indicator of TOD beyond average HBP

|                                        | LVMI |         | Carotid IMT |         | Log UACR |         |
|----------------------------------------|------|---------|-------------|---------|----------|---------|
| Variable                               | г    | Р       | r           | Р       | r        | Р       |
| Mean office SBP, mm Hg                 | 0.41 | < 0.001 | 0.24        | < 0.001 | 0.29     | < 0.001 |
| Mean office DBP, mm Hg                 | 0.05 | 0.34    | 0.03        | 0.56    | 0.05     | 0.34    |
| Mean home SBP, mm Hg                   | 0.46 | < 0.001 | 0.31        | < 0.001 | 0.30     | < 0.001 |
| Mean home DBP, mm Hg                   | 0.13 | 0.02    | 0.09        | 0.10    | 0.08     | 0.15    |
| Maximum home SBP,<br>mm Hg             | 0.51 | < 0.001 | 0.40        | < 0.001 | 0.29     | < 0.001 |
| Maximum home DBP,<br>mm Hg             | 0.23 | < 0.001 | 0.13        | 0.012   | 80.0     | 0.16    |
| Day-by-day home SBP variability, mm Hg | 0.31 | < 0.001 | 0.23        | < 0.001 | 0.20     | < 0.001 |
| Day-by-day home DBP variability, mm Hg | 0.22 | < 0.001 | 0.10        | 0.07    | 0.06     | 0.29    |

Hypertension 2011;57:1087-93.

## BPV and mortality; the Ohasama study (HBP)

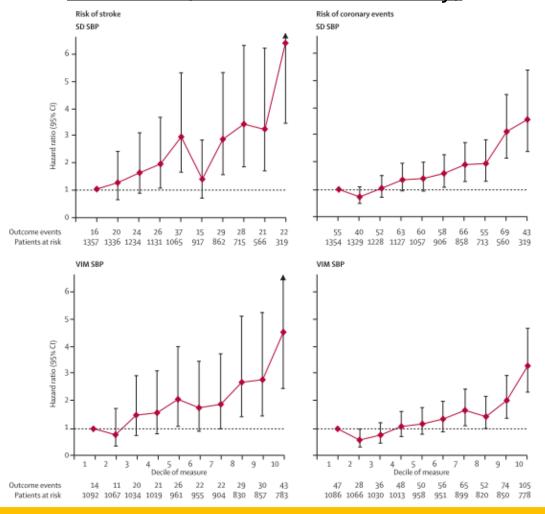



| Mortality                | Total*               | Cardiovascular*      | Stroke*              |
|--------------------------|----------------------|----------------------|----------------------|
| Deaths, n                | 462                  | 168                  | 83                   |
| Base model               |                      |                      |                      |
| Systolic BP, mm Hg       | 1.18 (1.07 to 1.31)  | 1.33 (1.13 to 1.57)  | 1.43 (1.13 to 1.80)§ |
| Heart rate, bpm          | 1.21 (1.11 to 1.31)  | 1.24 (1.08 to 1.42)§ | 1.27 (1.06 to 1.53)§ |
| Adjusted                 |                      |                      |                      |
| SD of systolic BP, mm Hg | 1.21 (1.10 to 1.32)  | 1.27 (1.09 to 1.47)§ | 1.41 (1.15 to 1.73)  |
| SD of heart rate, bpm    | 1.11 (1.02 to 1.21)‡ | 1.24 (1.09 to 1.41)§ | 1.17 (0.96 to 1.43)  |
| Fully adjusted           |                      |                      |                      |
| Systolic BP, mm Hg       | 1.13 (1.01 to 1.25)‡ | 1.26 (1.06 to 1.49)§ | 1.29 (1.01 to 1.64)‡ |
| Heart rate, bpm          | 1.19 (1.09 to 1.30)  | 1.16 (1.01 to 1.34)‡ | 1.25 (1.02 to 1.52)‡ |
| SD of systolic BP, mm Hg | 1.18 (1.07 to 1.31)  | 1.20 (1.02 to 1.40)‡ | 1.38 (1.12 to 1.72)§ |
| SD of heart rate, bpm    | 1.05 (0.96 to 1.16)  | 1.18 (1.02 to 1.36)‡ | 1.06 (0.84 to 1.33)  |

# BPV in treated and untreated patients ; Ohasama population

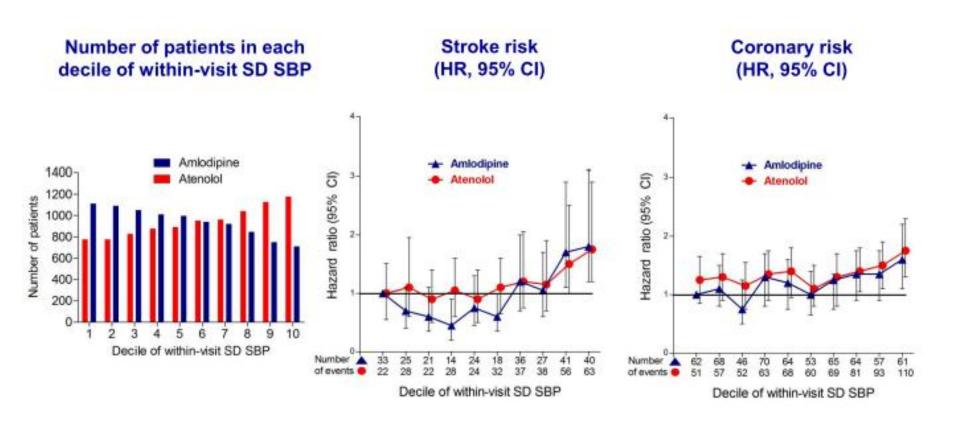
|                        |                         | ABP                       |                                       |                            | НВР                              |  |  |
|------------------------|-------------------------|---------------------------|---------------------------------------|----------------------------|----------------------------------|--|--|
|                        | SD of daytime<br>(mmHg) | SD of nighttime<br>(mmHg) | SD of 24-h<br>(mmHg)                  | SD of morning<br>(mmHg)    | SD of evening (mmHg)             |  |  |
| All subjects $(n=1,2)$ | 07)                     |                           |                                       |                            |                                  |  |  |
| SBP                    | $15.1 \pm 4.4$          | .11.0±3.9**               | $16.5 \pm 4.3**, ††$                  | 8.8±3.1**, <sup>;;,∬</sup> | 9.0±2.3**,#,∬                    |  |  |
| DBP                    | $9.6 \pm 2.8$           | $6.9 \pm 2.4**$           | $10.8 \!\pm\! 2.5$ **,††              | 6.6±2.3**, <sup>↑†,∫</sup> | $6.8 \pm 2.2 * $                 |  |  |
| Untreated subjects (   | (n=881)                 |                           |                                       |                            |                                  |  |  |
| SBP                    | $14.3 \pm 4.3$          | $10.6 \pm 3.8**$          | $16.0 \pm 4.2 ** . ^{\dagger\dagger}$ | $8.3 \pm 2.9 **, ††$       | 8.5±3.0**, <sup>††</sup> ,∬      |  |  |
| DBP                    | $9.2 \pm 2.6$           | 6.6±2.3**                 | $10.5 \pm 2.4$ **,††                  | $6.5 \pm 2.4**$ , §        | 6.7±2.2**. <sup>∬</sup>          |  |  |
| Treated subjects (n=   | =326)                   |                           |                                       |                            |                                  |  |  |
| SBP                    | 17.2 ± 4.3##            | $12.2 \pm 4.1$ **,##      | $18.1 \pm 4.2$ **,††,##               | 10.1±3.2**, <sup>#</sup>   | 10.3±3.3**, <sup>††</sup> ,,,,,# |  |  |
| DBP                    | $10.7 \pm 2.8$ ##       | $7.4\pm2.5**,##$          | 11.6±2.6**, <sup>††</sup> ,##         | 6.9±2.3**,†,¶,#            | 7.1±2.2**,√,#                    |  |  |

## BPV by OBPM; long-term variability

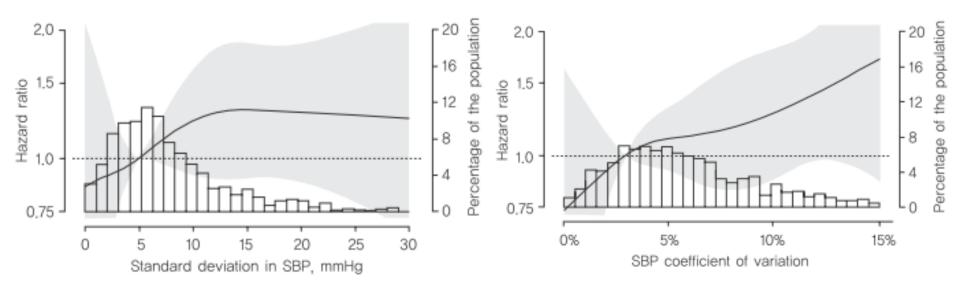

#### Within visit variability



Between visit or visit-visit variability


#### Maximum BP assessed by OBP

; a strong predictor of stroke and coronary events independent of mean BP (visit-to-visit variability)



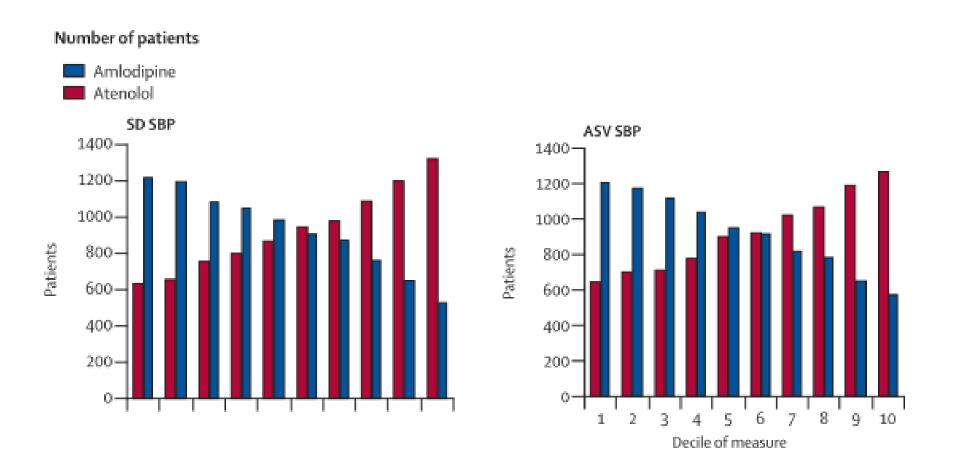

WCE was not predictive of stroke or coronary events (data not shown), and was not correlated with visit-to-visit variability (r=0.01 for visit-to-visit SD, coefficient of variation, and variation independent of mean).

### Within-visit SBP variability ; ASCOT-BPLA



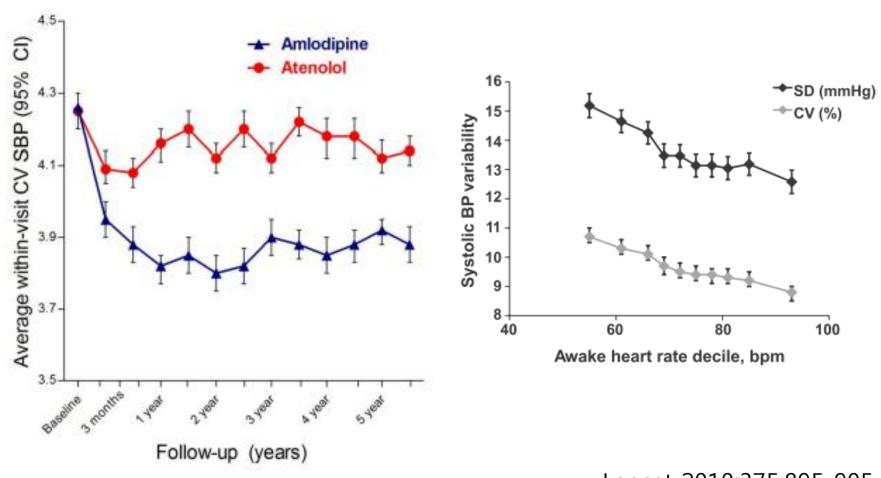
### Visit-to-visit variability in the general population ; from NHANES III (OBP)




Visit-to-visit variability for DBP was not associated with mortality.

Visit-to-visit variability has only a weak relation(r=0.29 to 0.38) with the SD of daytime BP on ambulatory monitoring.

Hypertension 2011;57:160-6.


#### <u>Different antihypertensives might differently affect BPV</u>

; ASCOT-BPLA (visit-to-visit variablity; interindividual)

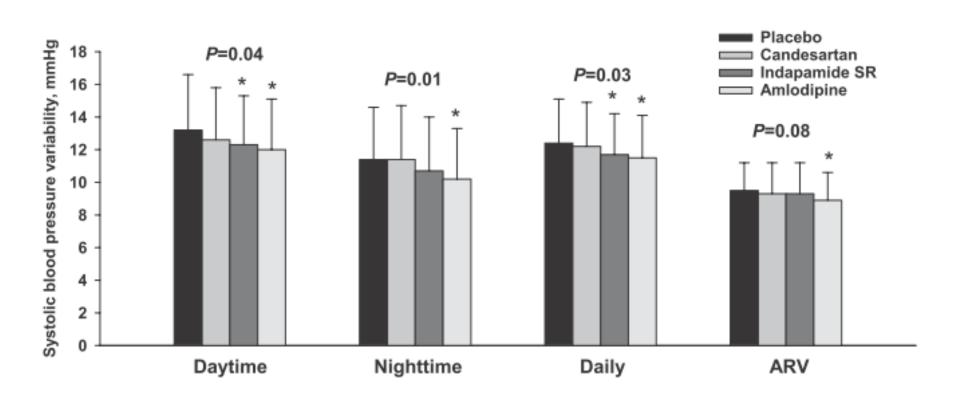


Lancet 2010;375:895-905.

#### <u>Different antihypertensives might differently affect BPV</u> ; ASCOT-BPLA (within-visit variablity)



Lancet 2010;375:895-905. Hypertens Res 2009;32:488-95.


### Small differences in mean SBP but large in SD ; ALLHAT

| Treatment group  |              |                |              | p value for di              | p value for difference in SD SBP |  |
|------------------|--------------|----------------|--------------|-----------------------------|----------------------------------|--|
|                  | Amlodipine   | Chlorthalidone | Lisinopril   | Amlodipine<br>vs lisinopril | Chlorthalidone<br>vs lisinopril  |  |
| Baseline         | 146-2 (15-7) | 146-2 (15-7)   | 146-4 (15-7) | 0.5                         | 0.5                              |  |
| 1-year follow up | 138-5 (14-9) | 136-9 (15-8)   | 140-0 (18-5) | 9×10 <sup>-79</sup>         | 7×10 <sup>-55</sup>              |  |
| 2-year follow up | 137-1 (15-0) | 135.9 (15.9)   | 138-4 (17-9) | 3×10 <sup>-48</sup>         | 1×10 <sup>-28</sup>              |  |
| 3-year follow up | 135-6 (15-2) | 134-8 (15-4)   | 136-7 (17-3) | 9×10 <sup>-25</sup>         | 2×10 <sup>-25</sup>              |  |
| 4-year follow up | 134-8 (15-0) | 133.9 (15.7)   | 135-5 (17-2) | 1×10 <sup>-24</sup>         | 2×10 <sup>-14</sup>              |  |
| 5-year follow up | 134-7 (14-9) | 133.9 (15.2)   | 135-9 (17-9) | 1×10 <sup>-24</sup>         | 8×10 <sup>-25</sup>              |  |

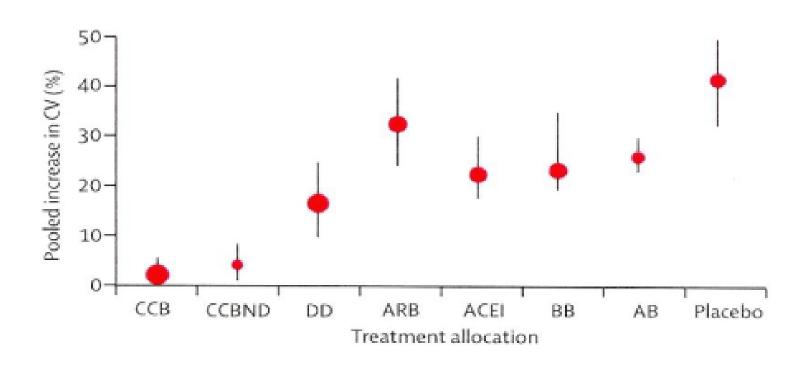
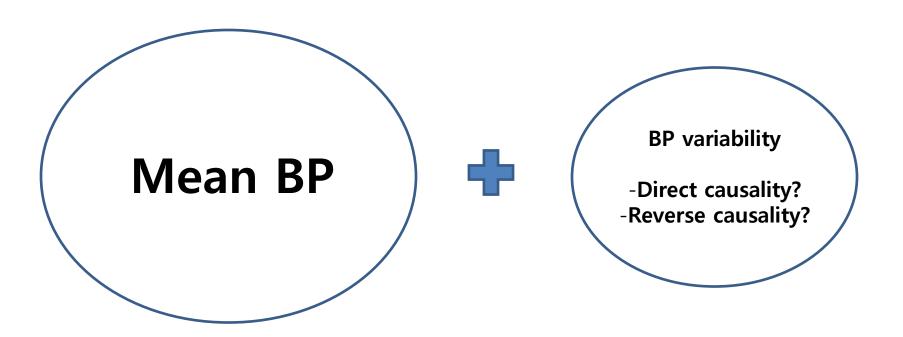

Data are mean (SD). p values for differences between treatment groups in inter-individual variation in systolic blood pressure (SBP; ie, SD SBP) are shown for every follow-up visit.

Table 2: Mean (SD) SBP at baseline and during follow-up in the ALLHAT trial,<sup>24</sup> stratified by randomised treatment group


### CCB, diuretics and ARB on BPV ; X-CELLENT study

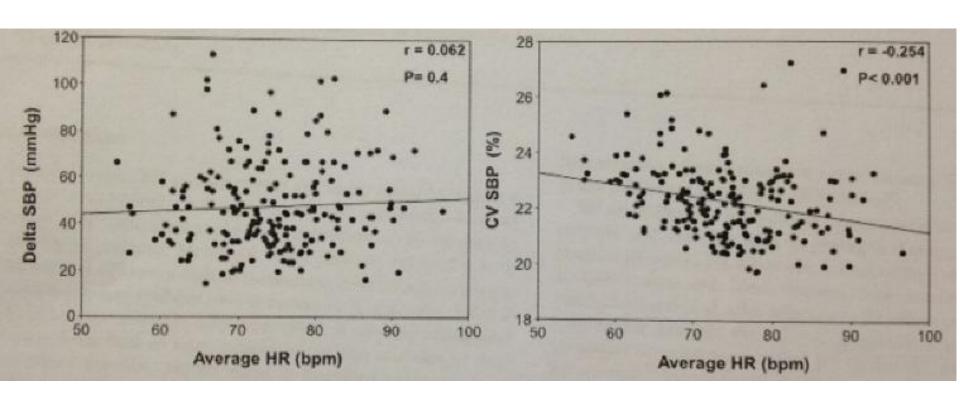


#### SBP variability btw antihypertensives

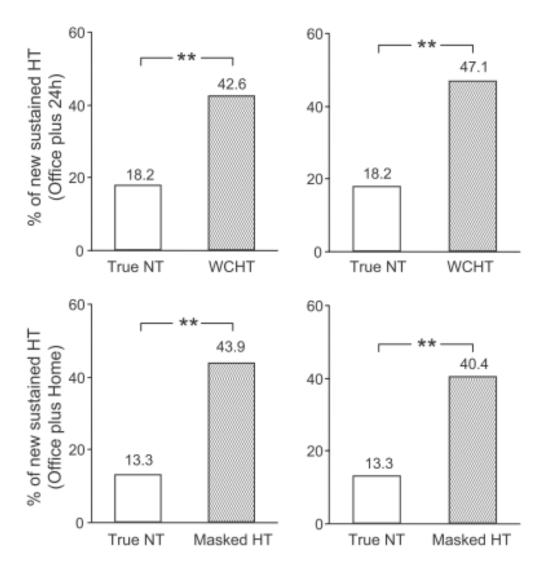


#### More precise risk prediction



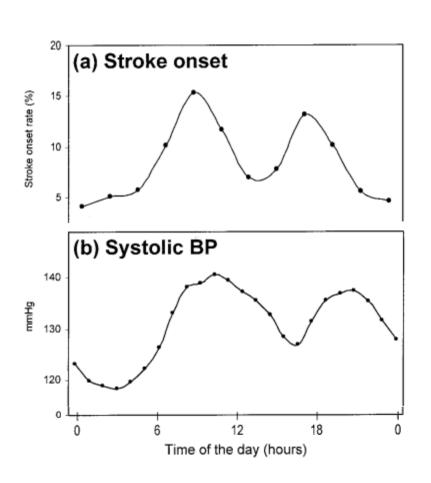

Physicians are frequently concerned by the possibility that BP fluctuations occurring in daily life, which often rise well above the average BP level, might cause additional hemodynamic stress on the heart and vasculature, increasing the risk of organ damage.

#### <u>Summary</u>


- Mean BP is a very powerful risk factor for vascular events, but much other epidemiological evidence suggests that variability in BP are also important.
- BPV have important roles in the progression of organ damage and in triggering of vascular events.
- But, recent study results come from post-hoc analysis and not from analysis planned at the time of setting up the protocols for the studies.
- There is currently no proof that BPV reduction improves cardiovascular risk in human subjects.
- BPV reduction as an additional goal for antihypertensive treatment, along with the reduction in average BP values?
- Clinician needs to record as many BP values as possible, to allow for the determination of all "intra" and "inter" visit BP values and their variations.

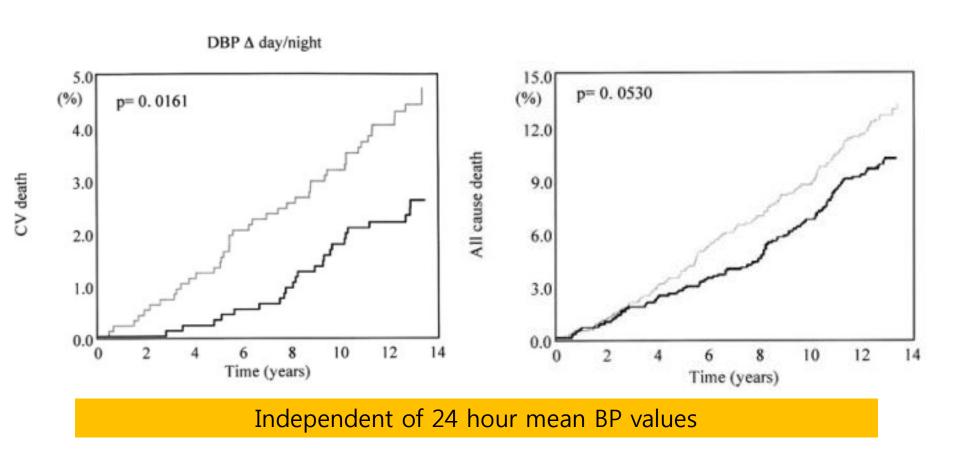
### 경청해 주셔서 감사합니다.

#### **BPV** and HR



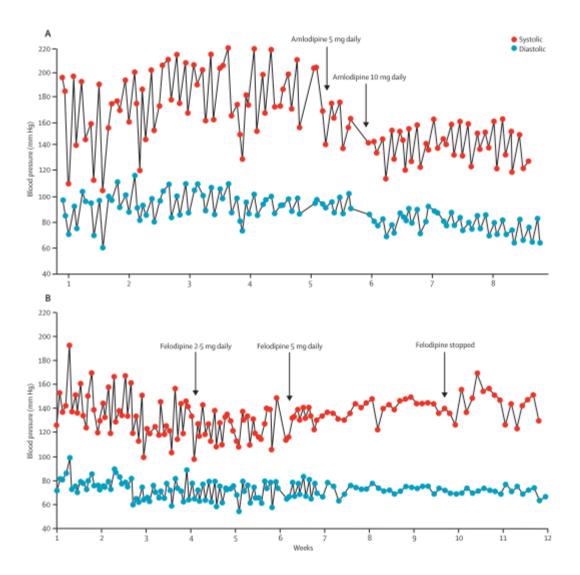

#### Long-term risk of sustained hypertension



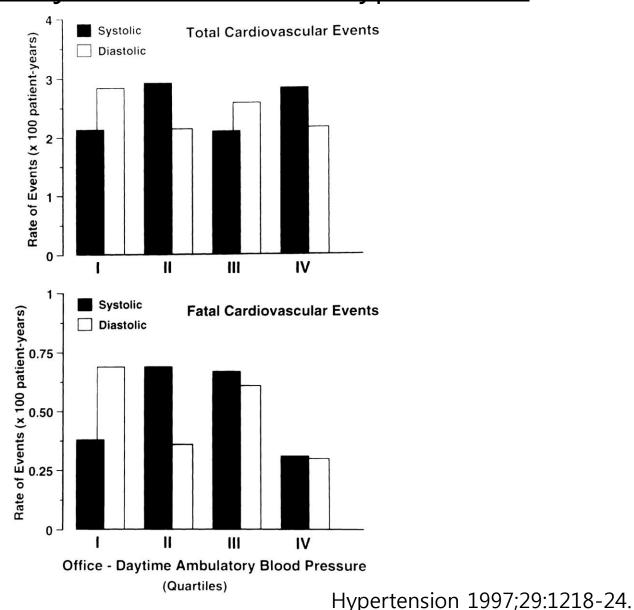

Hypertension 2009;54:226-32.

### Whatever the time of the day when a BP surge occurs...(ABP)




|                |               | Stroke Onset Rate      |                            |                        |                            |  |
|----------------|---------------|------------------------|----------------------------|------------------------|----------------------------|--|
|                |               | Hypertensives (n=633)  |                            | Normotensives (n=178)  |                            |  |
| Period         | Time Interval | Strokes per<br>Hour, n | Stroke Percent<br>per Hour | Strokes per<br>Hour, n | Stroke Percent<br>per Hour |  |
| Morning        | 6 to noon     | 39.2                   | 6.2                        | 12.7                   | 7.1                        |  |
| Afternoon      | Noon to 4     | 23.3                   | 3.7                        | 6.5                    | 3.7                        |  |
| Evening        | 4 to 8        | 36.8                   | 5.8                        | 8.0                    | 4.5                        |  |
| Night          | 8 to 6        | 15.8                   | 2.5                        | 4.4                    | 2.5                        |  |
| Expected rate  |               | 26.4                   | 4.2                        | 7.4                    | 4.2                        |  |
| P for $\chi^2$ |               | < 0.001                |                            | < 0.001                |                            |  |

## BPV(DBP;ABP) and mortality ; PAMELA study




Hypertension 2007;49:1265-70.

#### CCB on within-individual BPV



### WCE does not predict cardiovascular morbidity and mortality in subjects with essential hypertension



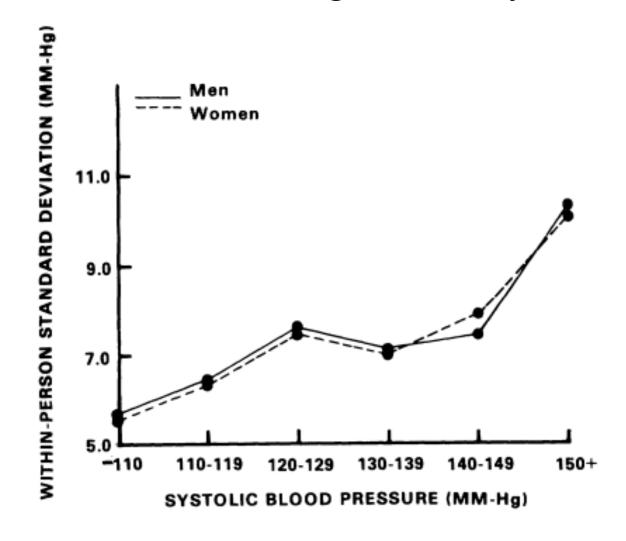
#### Blood pressure thresholds

NICE 2011

| Measurement             | Normal   | Stage 1  | Stage 2   | Target <80 | Target ≥ 80 |
|-------------------------|----------|----------|-----------|------------|-------------|
| Office or clinic        | < 120/80 | ≥ 140/90 | ≥ 160/100 | < 140/90   | < 150/90    |
| Home                    |          | ≥ 135/85 | ≥ 150/95  | < 135/85   | < 145/85    |
| Ambulatory<br>(daytime) |          | ≥ 135/85 | ≥ 150/95  | < 135/85   | < 145/85    |

ESH 2010

| Measurement      | Normal   | Systolic BP | Diastolic BP |
|------------------|----------|-------------|--------------|
| Office or clinic |          | 140         | 90           |
| Home             | < 130/80 | 135         | 85           |
| Ambulatory       |          | 125         | 80           |


JSH 2009

ESH hypertension guideline, J Hum Hypertens 2010;24:779-785.

| Measurement      | Normal   | Systolic BP | Diastolic BP |
|------------------|----------|-------------|--------------|
| Office or clinic |          | 140         | 90           |
| Home             | < 125/75 | 135         | 85           |
| Ambulatory       |          | 130         | 80           |

JSH hypertension guideline, Hypertension Research 2009;32:11-23.

### BPV and average BP levels ; from Framingham study

