Relationship Between Pulse Pressure, Arterial Stiffness and Cerebral Small Vessel Disease

Dae-Hyun Kim Department of Neurology Dong-A University Hospital

Components of cerebral small vessel disease

Pulse pressure and cerebral small vessel disease

Treatment of cerebral small vessel disease

Expressions of cerebral small vessel disease

Cerebral small vessel

MR findings of CSVD

Clinical symptoms

Lacunar SD

Vascular dementia

Gait disturbance

Depression

J Neurol Neurosurg Psychiatry 2011;82:126

Pathology of cerebral small vessel disease

Cerebral small vessel

Pathologic findings

Complete lacune infarct

Small hemorrhage

Hyaline arteriosclerosis

Eccentric atherosclerotic Plaque

Comparison of Stroke Subtype

Quantification of white matter lesion

Cardiovascular Health study

WMHs on T2-weighted FLAIR raw image (left) and labeled with an intensity threshold (right)

Three-dimensional reconstruction of WMHs

Characteristics of WMHs

- WMH are a surrogate marker of small-vessel vascular disease resulting from ischemic damage due to chronic hypoperfusion
- WMH were associated with chronological age and vascular risk factors
- Most severe among adults with the highest absolute blood pressure and blood pressure fluctuation over a 3-year period
- Stroke risk increased 3.5-fold, dementia risk increased 2-fold
- Death risk increased 2-fold

Components of cerebral small vessel disease

Pulse pressure and cerebral small vessel disease

Treatment of cerebral small vessel disease

Associations between SBP and risk of stroke

Stroke 2004;35:1024

Pulse pressure and risk of stroke & WMLs

Stroke

TABLE 2. Risk Ratios for Factors Examined

	Risk Ratio (95% Confidence Interval)			
Factor	Stroke	Death		
Pulse pressure (per 10 mm Hg increase)	1.11 (1.01–1.22), <i>P</i> =0.028	1.16 (1.08–1.24), <i>P</i> <0.001		
MAP (per 10 mm Hg increase)	1.20 (1.02–1.42), P=0.031	1.14 (1.01–1.29), P=0.035		
Age	1.63 (1.35–1.99), <i>P</i> <0.001	1.07 (1.06–1.09), <i>P</i> <0.001		
HDL cholesterol (per 0.39-mmol/L increase)	0.86 (0.78–0.94), <i>P</i> <0.001	0.91 (0.84-0.98)		
History of stroke	2.34 (1.15-4.78), P=0.019			
History of myocardial infarction	0.52 (0.26–1.07), P=0.075			
Current smoking	1.71 (1.22-2.39), P=0.002	2.13 (1.67–2.73), <i>P</i> <0.001		
History of diabetes	2.02 (1.45–2.82), P<0.001	1.83 (1.40–2.38), <i>P</i> <0.001		
Randomization (active)	0.67 (0.52-0.87), P=0.002	0.84 (0.69–1.02), P=0.079		
ECG abnormality	1.46 (1.10-1.94), P=0.008			
Heart rate (per 10 bpm increase)	1.11 (0.99–1.25), <i>P</i> =0.087	1.02 (1.01–1.03), <i>P</i> <0.001		
Race (nonblack)		0.78 (0.60-1.01), P=0.058		
Gender (men)		1.58 (1.29–1.94), <i>P</i> <0.001		

White matter lesions

		Advanced WMLs (grade 3 or higher)			
Quartiles of PP (mmHg)		OR (95% Cl)			
	Prevalence [n (%)]	Age, sex, HT-adjusted ^a	Multivariable-adjusted ^b		
≤37	10 (5.7)	Reference	Reference		
38-44	13 (7.2)	1.04 (0.43-2.51)	1.06 (0.44-2.56)		
45-53	18 (10.6)	1.33 (0.57-3.07)	1.29 (0.54-3.08)		
≥54	55 (32.9)	2.81 (1.27-6.23)	2.55 (1.03-6.30)		

Cl, confidence interval; HT, hypertension; OR, odds ratio; PP, pulse pressure; WMLs, white matter lesions. * Odds ratio (95% Cl) of cerebral WMLs, adjusted for age, sex and hypertension. * Additional adjustment for high systolic and diastolic blood pressure, aspirin use, the high level of high-sensitivity C-reactive protein, and cardiovascular risk factors (diabetes, ever smoking, coronary artery disease, the high levels of total cholesterol and triglyceride, and the low level of high-density lipoprotein cholesterol). Hypertension 1999;34:375-380 J of hypertension 2011;29:325-329 Neuroepidemiology 1997;16:149-162

Arterial Stiffness and Stroke

- Aortic stiffness is associated with ischemic stroke, independent of thickness of aortic arch plaques and other the risk of ischemic stroke in the elderly
 Stroke 2002;33:2077
- In longitudinal study, aortic stiffness is an independent predictor
 of fatal stroke in patients with essential HT
 Stroke 2003;34:1203
- The causal interrelationship between the elastic properties of the common carotid artery and the risk of stroke

European J Neurol 2006;13:475

Pulsatile pressure changes in the vascular tree

How HT contributes to WM lesion?

Arterial stiffness and cerebral small vessel disease

Increased brachial–ankle pulse wave velocity is independently associated with risk of cerebral ischemic small vessel disease in elderly hypertensive patients

Dae-Hyun Kim, Jei Kim, Jae-Moon Kim, Ae Young Lee*

Clinical Neurology and Neurosurgery 2008;110:599

Arterial stiffness and cerebral small vessel disease

Increased Aortic Pulse Wave Velocity Is Associated With Silent Cerebral Small-Vessel Disease in Hypertensive Patients

Léon H.G. Henskens, Abraham A. Kroon, Robert J. van Oostenbrugge, Ed H.B.M. Gronenschild, Monique M.J.J. Fuss-Lejeune, Paul A.M. Hofman, Jan Lodder, Peter W. de Leeuw

Hypertension 2008;52::1120

Relationship between PWV and Cerebral SVD

Increased Aortic Pulse Wave Velocity Is Associated With Silent Cerebral Small-Vessel Disease in Hypertensive Patients

Léon H.G. Henskens, Abraham A. Kroon, Robert J. van Oostenbrugge, Ed H.B.M. Gronenschild, Monique M.J.J. Fuss-Lejeune, Paul A.M. Hofman, Jan Lodder, Peter W. de Leeuw (*Hypertension.* 2008;52:1120-1126.)

Cerebral Microbleeds Are Independently Associated with Arterial Stiffness in Stroke Patients

Woo-Keun Seo Jong-Moon Lee Moon Ho Park Kun Woo Park Dae Hie Lee Department of Neurology, College of Medicine, Korea University Ansan Hospital, Ansan-city, Republic of Korea Cerebrovasc Dis 2008;26:618–623

Relationship between PWV and Cerebral SVD

Pulse wave velocity (Large artery stiffness) Pulsatile Index (microvascular stiffness)

Grading of CSVD

Arterial stiffness, PIs and severity of CSVD

Table 2. Multiple regression analysis of the PI of MCA and associated variables

Independent variable	β coefficient	t value	p value
Age	0.008	4.659	< 0.001
Sex	0.051	1.583	0.116
Pulse pressure	0.001	0.866	0.388
Heart rate	-0.001	-0.935	0.352
BaPWV	0.001	2.730	0.007

BaPWV = Brachial ankle pulse wave velocity; adjusted $R^2 = 0.379$.

	Multiple lacunes		Moderate to severe white matter lesions		
	OR (95% CI)	р	OR (95% CI)	р	
Age	1.06 (1.01-1.12)	0.016	1.07(1.01 - 1.14)	0.018	
Male gender	0.61 (0.22-1.67)	0.340	1.79 (0.68-4.72)	0.233	
Hypertension	2.54 (0.99-6.53)	0.052	2.38 (0.80-7.03)	0.115	
Diabetes	0.51 (0.18-1.40)	0.196	0.58 (0.19-1.77)	0.589	
BaPWV (100 cm/increment)	1.21(1.02 - 1.44)	0.028	1.13 (0.95-1.35)	0.139	
Initial systolic BP	1.00 (0.98-1.02)	0.478	1.00(0.98 - 1.02)	0.956	
Heart rate	1.00(0.95 - 1.05)	0.930	1.01 (0.97-1.06)	0.424	

Cerebral SVD and clinical marker

- Increased SBP and pulse pressure
- Elevated 24-hour ambulatory blood pressure
- Small nocturnal fall in blood pressure
- Pathological changes in the retinal artery
- Microalbuminuria / subclinical renal disease
- Increased intima-media thickness of carotid artery

Hypothesis: Systemic Arteriolar Dysfunction

Thompson, C. S. et al. Stroke 2009;40:322-330

PWV and subclinical target organ damage

Scatterplot depicting the unadjusted correlations of aortic pulse wave velocity (aPWV) with log (CAC + 1), ABI, log (WMH), and log (UACR + 1). ABI = ankle-brachial index; CAC = coronary artery calcification; UACR = urine albumin/creatinine ratio; WMH = brain white matter hyperintensity volume.

Coutinho et al. JACC 2011;4:754-61

Components of cerebral small vessel disease

Pulse pressure and cerebral small vessel disease

Treatment of cerebral small vessel disease

Management of lacunar stroke

- Thrombolytic therapy
- Stroke prevention
 - Antiplatelet agent
 - Blood pressure control
 - Lipid lowering

Blood pressure control and WML change

- Perindopril Protection Against Recurrent Stroke Study (PROGRESS)
- MRI substudy (Cerebral WMHI in patients with stroke, N=192)
- MRI at baseline and follow-up (mean 3 years)
- Blood pressure reduction difference between active treatment and control (11.2 mmHg for SBP, 4.3 mmHg for DBP)

	Total (n=192)	Placebo (n=103)	Active (n=89)	P Value, Model 1*	P Value, Model 2†
Incident WMH, n (%)	24 (13)	16 (16)	8 (9)	0.17	0.10
Mean volume of incident WMH, mm ³ (SE)	1.8 (0.5)	2.0 (0.7)	0.4 (0.8)	0.012	0.009
Volume of incident WMH by initial grade of WMH, mm ³ (SE)					
No WMH	0.05 (0.8)	0	0.09 (0.8)	0.76	0.81
Mild to moderate WMH	1.2 (1.2)	1.3 (1.0)	0.9 (1.0)	0.58	0.71
Severe WMH	6.5 (2.0)	7.6 (1.0)	0	< 0.0001	< 0.0001

TABLE 4. Presence and Volume of Incident WMH by Treatment

Circulation 2005;112:1644

Conclusions

- The cerebral small arteries are exposed to high tensile pressure and susceptible to hemodynamic alterations
- Stiffening of the large arteries increases pulsatile pressure and flow stresses to the arterial walls, which extends down into the cerebral microvessels
- Higher aPWV was independently associated with greater burden of subclinical disease in cerebral small artery beds
- An active HT treatment can stop or delay the progression of cerebral SVD

감사합니다