Expanding Catheter Therapeutics

Below Knee Intervention

Seung-Whan Lee, MD, PhD

Asan Medical Center,
University of Ulsan College of Medicine, Seoul, Korea
PCI Like, but Not a Coronary Artery

- Technique of infrapopliteal artery angioplasty is quite different from iliac or SFA intervention.
- The vessel size of BTK is < 4 mm.
- Wires for angioplasty are 0.018 or 0.014 inch.
- Balloons sizes are between 3.5 mm and 2.0 mm.
- All equipments are quite similar to coronary devices.
- Technical demand for PTA is also percutaneous coronary intervention (PCI) like procedures.
Anatomic Challenges
Infrapopliteal disease

• Atherosclerotic disease confined to the infrapopliteal arteries may be asymptomatic due to the excellent collateral network between tibial arteries.

• One patent tibial artery is often sufficient to keep a patient free from ischaemic symptoms.

• When these patients present with CLI, they often have severe, extensive three-vessel disease and only 20–30% have a simple, focal lesion with good distal run-off.
Anatomic Challenges
Infrapopliteal disease

- Patients are usually elderly with several comorbidities, such as diabetes and coronary artery disease, which increases the surgical risk.

- Femorodistal and pedal bypass surgery is technically demanding and associated with a 1.8–6% perioperative mortality.
Classification of disease

TransatlAntic interSociety Consensus document

Preferred Treatment

- **Group A** consists of single stenoses shorter than 1 cm.
 - **PTA**

- **Group B** consists of multiple focal (<1 cm) stenoses of the tibial or peroneal arteries (including up to two focal stenoses at the tibial trifurcation) and short tibial stenoses in conjunction with femoropopliteal disease.

 However, due to the improvements in equipment and technique, endovascular therapy is now considered a feasible option in groups C–D. In addition the presence of co-morbid conditions and operator skills should be considered when making the final decision.

- **Group C** consists of longer stenoses 1–4 cm and occlusions 1–2 cm as well as extensive stenoses at the tibial trifurcation.

- **Group D** consists of occlusions longer than 2 cm and diffusely diseased tibial vessels
 - **Surgery**
Why?

PTA for intrapopliteal lesions

- The highest likelihood of coronary heart disease in patients with infrapopliteal disease.
- **PTA is a low-risk and minimally invasive procedure**, which rarely compromises a later surgical procedure, and at the same time preserves the saphenous vein for future coronary or lower extremity distal bypass surgery.
- The total intervention time of infrapopliteal PTA (less than 2 h), is shorter than time of surgery (4h)
- **Avoids general anaesthesia and shorteer the hospital stay**, compared with surgical treatment.
- **Repeat PTA**, unlike repeat surgical bypass operations, can be **easily performed** in case of restenosis.
How do you treat intrapopliteal lesions?

- In those with significant medical co-morbidities
- Absence of suitable veins to act as conduits for bypass,
- Inadequate sites for distal anastomosis
 - No angiographically visible tibial vessels,
 - Vessels ≤ 1 mm in diameter,
 - Diffusely diseased vessels
72yo Female

- DM foot ulcer, DM ESRD on HD

Before

- Ipsilateral puncture
- Terumo sheath (25 cm), (or Ansel, 55 cm)
- Choice PT 2 wire, BMW long wire
- Finecross, Jamiro, Cosair, any kinds of microcatheter
- Coronary balloon, Symmetry (pph over the wire balloon)
Indication

PTA for intrapopliteal lesions

- Critical limb ischemia
- Moderate to severe claudication (debate)
- Prevention of proximal PTA or bypass failure
Critical limb ischemia

<table>
<thead>
<tr>
<th>Clinical description</th>
<th>Fontaine class</th>
<th>Rutherford category</th>
<th>ABI</th>
<th>Symptom</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asymptomatic</td>
<td>I</td>
<td>0</td>
<td>0.85-1</td>
<td>none</td>
</tr>
<tr>
<td>Mild claudication</td>
<td>IIa</td>
<td>1</td>
<td>0.5-0.8</td>
<td>Walking distance > 200m</td>
</tr>
<tr>
<td>Moderate claudication</td>
<td>IIb</td>
<td>2</td>
<td>0.5-0.8</td>
<td>Walking distance = 100-200m</td>
</tr>
<tr>
<td>Severe claudication</td>
<td>IIb</td>
<td>3</td>
<td>0.5-0.8</td>
<td>Walking distance < 100m</td>
</tr>
<tr>
<td>Ischemic rest pain</td>
<td>III</td>
<td>4</td>
<td><0.5</td>
<td>Resting pain</td>
</tr>
<tr>
<td>Minor tissue loss</td>
<td>IV</td>
<td>5</td>
<td><0.5</td>
<td>Minor tissue loss (ulceration)</td>
</tr>
<tr>
<td>Major tissue loss</td>
<td>IV</td>
<td>6</td>
<td><0.5</td>
<td>Major tissue loss (gangrene)</td>
</tr>
</tbody>
</table>
Critical limb ischemia

- High cardiovascular mortality rate (46% at 5 years)
- 25% amputation rate despite attempts at revascularization.
- Patients with CLI undergoing successful revascularization survive longer and have an increased quality of life compared with patients who have an amputation.
- Therefore, restoration of adequate blood supply to the foot should be attempted whenever possible in all these patients.
- Even if amputation cannot be avoided, infrapopliteal PTA may allow a lesser amputation in patients who would otherwise have needed a major amputation.
<table>
<thead>
<tr>
<th>Clinical description</th>
<th>Fontaine class</th>
<th>Rutherford category</th>
<th>ABI</th>
<th>Symptom</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asymptomatic</td>
<td>0</td>
<td>0.85-1</td>
<td>none</td>
<td></td>
</tr>
<tr>
<td>Mild claudication</td>
<td>1</td>
<td>0.5-0.8</td>
<td>Walking distance>200m</td>
<td></td>
</tr>
<tr>
<td>Moderate claudication</td>
<td>2</td>
<td>0.5-0.8</td>
<td>Walking distance=100-200m</td>
<td></td>
</tr>
<tr>
<td>Severe claudication</td>
<td>3</td>
<td>0.5-0.8</td>
<td>Walking distance<100m</td>
<td></td>
</tr>
<tr>
<td>Ischemic rest pain I</td>
<td>4</td>
<td><0.5</td>
<td>Resting pain</td>
<td></td>
</tr>
<tr>
<td>Minor tissue loss V</td>
<td>5</td>
<td><0.5</td>
<td>Minor tissue loss (ulceration)</td>
<td></td>
</tr>
<tr>
<td>Major tissue loss V</td>
<td>6</td>
<td><0.5</td>
<td>Major tissue loss (gangrene)</td>
<td></td>
</tr>
</tbody>
</table>

- PTA is recommended in simple lesion with moderate to severe claudication
Prevention of proximal PTA or bypass failure

- PTA is effective in treating graft stenosis
- Distal run-off influences long-term patency rates after femoropopliteal PTA or bypass surgery; patients with 2–3 patent vessels have significantly better long-term patency rates after femoropopliteal PTA than patients with 0–1 patent calf arteries.
Subintimal Angioplasty: factor affecting primary patency after SFA intervention

N=51, primary patency at 12 Mo: 50%

Run-off vessels
- 2/3 run-off: 0.30 (0.11-0.87)
- 1 run-off: 0.25
- >30 cm: 0.35

Length of occlusion (cm)
- <30 cm: 1.02 (1.00-1.04)
- >30 cm: 0.75

Lazaris AM et al. Eur J Vasc Endovasc Surg 2006; 32: 668-674
RESULTS of PTA
Technical success

- The technical success rates of infrapopliteal angioplasty range between 78% and 100%.
- Occlusion length >10 cm is an adverse factor both for technical success and patency.
Discrepancy between primary patency and clinical success

• Primary patency rates for PTA vary widely
 - 13% to 81% at 1 year
 - 48% to 78% at 2 years.

• The limb salvage rate for PTA
 - 77% to 89% at 1 year
 - 94% at 3 years (one report).

• The limb salvage rate for surgery
 - 81% to 88% at 1 year
 - 88 at 2 years.
 - 80 at 3 years.
Discrepancy between primary patency and clinical success

• This feature is more prominent in patients with tissue loss, especially with ulcers, than in those with rest pain.

• Ulcer healing reduces the oxygen demand and as a consequence less blood flow is generally required to maintain tissue integrity compared with the amount required for initial ulcer healing.

• Collaterals may therefore be sufficient to preserve tissue integrity if there is no further injury.
Results of infrapopliteal disease

- 144 patients/155 PTA
 - 86% with critical limb ischemia
 - 66% with DM, 45% with renal failure
 - TASC A (7%), B (18%), C (39%), D (35%)
- Successful Revascularization in 95% of lesions
- 40-month Follow-Up
 - Primary patency--62%
 - Ulcer healing --64%
 - Limb salvage—86.2%
 - Survival---54%

Negative predictors of primary patency

- 0/1 vessel run-off
- Critical limb ischemia
- Dialysis

Negative predictors of limb salvage

- Dialysis
- Failure to improve runoff to the foot

Negative predictors of survival

- Severe pulmonary disease
- Coronary artery disease
- Renal insufficiency
PTA vs. BMS
Randomized trial (length: 2-15 cm)
Clinical outcomes @ 12 months

Angioplasty (n=22) vs. BMS (n=16)

- Primary patency: 66 vs. 56
- Secondary patency: 79.5 vs. 64
- Limb salvage: 90 vs. 91.7
- Survival: 69.3 vs. 74.7

No difference

Complications of PTA

- Complication rate: 2-6%
- Puncture site hematoma
- Acute arterial occlusions by spasm or dissection: (stent or liberal use of antispasmodics)
- Embolic occlusion: thrombolysis or thrombectomy
- Arterial perforations (3.7%): rarely require intervention
- 30-day mortality: 1.7% vs. bypass surgery: 1.8-6%
RESULTS of Surgery
Result of bypass surgery

Total population: 517 patients

- Primary patency
- Secondary patency

Graft patency @ 12 months

- All: 45% (Primary) 52% (Secondary)
- Vein: 45% (Primary) 53% (Secondary)
- Prosthetic graft: 40% (Primary) 46% (Secondary)

Clinical outcomes @ 12 months

- Amputation: 20%
- Death: 18%

Eur J Vasc Endovasc Surg 1999;17:77–83
Patent vs. occluded graft

Clinical outcomes @ 12 months

- Patent graft (n=341)
- Occluded graft (n=167)

- Fontaine stage I/II: Patent 63, Occluded 13
- Fontaine stage III/IV: Patent 12, Occluded 22
- Amputated: Patent 5, Occluded 53
- Death: Patent 20, Occluded 16

Eur J Vasc Endovasc Surg 1999;17:77–83
Early clinical outcomes after surgery

Total population: 112 patients

Wound (operative and ischemic) healing: a mean of 4.2 months, and 22% had not achieved complete wound healing at the time of last FU or death.
Only 14.3% achieved the ideal surgical result of an uncomplicated operation with long-term symptom relief, maintenance of functional status, and no recurrence or repeat operations.

Assistant-primary patency: 77%
Limb salvage: 88%
Survival rate: 49%
Repeat OP: 54%
Amputation including contalateral limb: 23.2%

BASIL trial
(Multicenter randomized trial for infrainguinal severe ischemia)

Surgery vs. Balloon angioplasty

Amputation-free survival

Mortality-free survival

[Graphs showing survival rates over time for surgery and balloon angioplasty]

Number at risk

<table>
<thead>
<tr>
<th></th>
<th>Baseline</th>
<th>Year 1</th>
<th>Year 2</th>
<th>Year 3</th>
<th>Year 4</th>
<th>Year 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Angioplasty</td>
<td>224</td>
<td>149</td>
<td>100</td>
<td>51</td>
<td>19</td>
<td>2</td>
</tr>
<tr>
<td>Surgery</td>
<td>228</td>
<td>148</td>
<td>108</td>
<td>64</td>
<td>23</td>
<td>7</td>
</tr>
</tbody>
</table>

Lancet. 2005;366:1925-34
New approach
68yo Male with Diabetic Foot

- Hypertension, Long standing diabetes
- DM ESRD on HD
First Treatment

Before

After
However, Incomplete wound healing and Restenosis Occurred and We need more than balloon...

Three months later

2nd Treatment
New approach

- Laser angioplasty
- Cutting balloon
- Coated stent
- Drug-eluting stents
- Absorbable metal stent
New approach

- Laser angioplasty
- Cutting balloon.
- Coated stent
- Drug-eluting stent
- Absorbable metal stent
Laser Angioplasty for Critical Limb Ischemia

Results of the LACI Phase 2 Clinical Trial
LACI Phase 2 Registry

• Prospective, multi-center study
• Patients with CLI
 - Rutherford Category 4-6
 - poor surgical candidates
• Treatment: ELA of SFA, popliteal and/or infrapopliteal arteries, with adjunctive PTA and optional stenting
• Primary Endpoint: limb salvage at 6 months
 - freedom from amputation at or above the ankle
Vascular Lesion Locations (N=406)

- SFA: 40%
- Popliteal: 15%
- Infrapopliteal: 25%
- Other: 0%

CardioVascular Research Foundation 2009
Main Endpoints

per-patient basis

<table>
<thead>
<tr>
<th></th>
<th>LACI</th>
<th>Control</th>
<th>(p)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Surgical intervention*</td>
<td>2%</td>
<td>34%</td>
<td><.001</td>
</tr>
<tr>
<td>At 6 months:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Died</td>
<td>10%</td>
<td>13%</td>
<td>ns</td>
</tr>
<tr>
<td>Survived with:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Limb salvage</td>
<td>93%</td>
<td>87%</td>
<td>ns</td>
</tr>
<tr>
<td>Persistent CLI</td>
<td>34%</td>
<td>31%</td>
<td>ns</td>
</tr>
</tbody>
</table>

* bypass or endarterectomy
New approach

- Laser angioplasty
- Cutting balloon.
- Coated stent
- Drug-eluting stents or balloon
- Absorbable metal stent
Cutting balloons

- Although application of this technique in peripheral arteries is still limited, it appears that it is effective in the treatment of resistant femorodistal bypass stenoses and complex infrapopliteal obstructions such as ostial and bifurcational lesions.
New approach

• Laser angioplasty
• Cutting balloon.
• Coated stent
• Drug-eluting stents or balloon
• Absorbable metal stent
Carbofilm coated stents vs. PTA
Prospective randomized trial

Carbon coated stent (42 lesions, 24pts) vs. PTA (53 lesions, 27 pts)

- 70% threshold: 83.7% vs. 61.1%
 - P < 0.05

- 50% threshold: 79.7% vs. 45.6%
 - P < 0.05

- Limb salvage: 92 vs. 95
 - P = NS

6-month primary patency rate

Cardiovasc Intervent Radiol. 2006;29:29-38
New approach

- Laser angioplasty
- Cutting balloon.
- Coated stent
- Drug-eluting stents or balloon
- Absorbable metal stent
SiroBTK study with SES
30 patients, 62 arteries, 106 SES
Primary endpoint: clinical improvement and healing of ulcer @ 1 & 7.7 months

• Angiographic and procedural success: 100%.
• 7 months outcomes
 - Amputatiton 1 toe in one patient and 1 mid-foot in another.
 - Limb salvage: 100% of patients.
 - Death: two cardiac deaths unrelated to CLI
 - Three recurrent homolateral claudication.
 - Mid-term clinical improvement: 100%
 - Primary patency: 97% (56 patent arteries on 58 arteries).

SES vs. BMS

6-month outcomes

<table>
<thead>
<tr>
<th>Event</th>
<th>SES (30 pts)</th>
<th>BMS (30 pts)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Major amputation</td>
<td>0</td>
<td>10</td>
</tr>
<tr>
<td>TLR</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Occlusion</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Restenosis</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Major adverse events</td>
<td>10</td>
<td>46.6</td>
</tr>
</tbody>
</table>

ALL P<0.05

BTK SES registry
Prospective nonrandomized single center registry
SES for Symptomatic focal infrapopliteal obstruction (n=74 pts)

Death Major amputation Surgery TLR Total No of adverse events Restenosis
20.2 2.7 1.3 1.3 25.7 2.1

CardioVascular Research Foundation 2009
Endovascular today 2007;August.71-74
BTK SES registry
Prospective nonrandomized single center registry
SES for Sxmatic focal infrepopliteal obstruction (n=74 pts)

Patency at 24 months
Primary: 89.2%
Secondary: 95.9%

Endovascular today 2007;August.71-74
PaRADISE trial

(PReventing Amputation using Drug-eluting StEnt)

Critical limb ischemia (106 pts, 108 limbs, SES 83%, PES 17%)

- Stent number/limb: 1.9±0.9, Stent length: 60±13 mm
- Target limb revascularization: 15%
- Angiographic restenosis: 12% (follow-up rate 35%)

Amputation-free survival

Mortality-free survival

SES vs. BMS for CLI

SES (29 pts) vs. BMS (29 pts) for bailout use

Endpoint: 1-year angiographic and clinical outcome

<table>
<thead>
<tr>
<th>Endpoint</th>
<th>SES (66 lesions, 29pts)</th>
<th>BMS (65 lesions, 29 pts)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary patency</td>
<td>92</td>
<td>68.1</td>
</tr>
<tr>
<td>In-stent restenosis</td>
<td>4</td>
<td>55.3</td>
</tr>
<tr>
<td>In-segment restenosis</td>
<td>32</td>
<td>66</td>
</tr>
<tr>
<td>Limb salvage</td>
<td>100</td>
<td>100</td>
</tr>
</tbody>
</table>

P<0.002, P<0.001, P=NS

SES vs. BMS

SES (75 limb, 153 lesions) vs. BMS (47 limb, 77 lesions)

3-year outcomes

- Primary patency: SES 95.6%, BMS 83% (P<0.001)
- Restenosis: SES 17.1%, BMS 8% (P<0.001)
- TLR: SES 22.4%, BMS 29.7% (P<0.001)
- Mortality: SES 29.3%, BMS 32% (P=0.205)
- Limb salvage: SES 80.3%, BMS 82% (P=0.507)

On-going trial

<table>
<thead>
<tr>
<th>Study</th>
<th>Test device</th>
<th>Control</th>
<th>Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drug-eluting balloon</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PICCOLO</td>
<td>PEB</td>
<td>Balloon</td>
<td>114</td>
</tr>
<tr>
<td>Drug-eluting stent</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ACHILESS</td>
<td>Cypher select</td>
<td>Balloon</td>
<td>200</td>
</tr>
<tr>
<td>DESTINY</td>
<td>Xience V</td>
<td>Vision (BMS)</td>
<td>140</td>
</tr>
<tr>
<td>YUKON</td>
<td>SES (Yukon)</td>
<td>Stent (Yukon)</td>
<td>130</td>
</tr>
</tbody>
</table>
New approach

- Laser angioplasty
- Cutting balloon
- Coated stent
- Drug-eluting stents or balloon
- Absorbable metal stent
Absorbable Magnesium Stent

Recoil	~ 5%
Foreshortening | < 5%

* Investigational device only - not for sale*

FEA: Fully expanded state
FEA: Crimped state
Clinical Results

BEST-BTK

First in Man experience with the Biotronik absorbable metal Stent Below The Knee

- 20 CLI patients (Rutherford 4-5) with BTK pathology
- Implants performed between December ‘03 – January ‘04
Limb Salvage After One Year

Limb Salvage Rate

<table>
<thead>
<tr>
<th>Time (Days)</th>
<th>Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>3M</td>
<td>100.0%</td>
</tr>
<tr>
<td>6M</td>
<td>94.7%</td>
</tr>
<tr>
<td>9M</td>
<td>94.7%</td>
</tr>
<tr>
<td>12M</td>
<td>94.7%</td>
</tr>
</tbody>
</table>
High Patency Rate

Primary Clinical Patency

- 3M: 89.5%
- 6M: 84.2%
- 9M: 78.9%
- 12M: 72.4%

Time (Days)
Conclusions I

- PTA is the preferred treatment strategy in patients with infrapopliteal occlusive disease who typically present with critical limb ischemia.

- With tremendous improvements in interventional devices and techniques, long and multiple stenotic and occlusive lesions can be treated successfully with PTA.

- PTA carries a lower morbidity and mortality compared with surgery and would be considered as the first treatment option in all patients with critical limb ischemia who would otherwise be offered distal bypass surgery or amputation, as failure rarely precludes surgery.
Conclusions II

- Clinical success is superior to angiographic patency and repeat angioplasty can be performed if there is recurrence of ischaemic symptoms and signs.

- DESs have a consistent and profound effect on the mid-term reduction of restenosis. However, long-term results remain doubt.

- While there is growing familiarity and acceptance of DESs in endovascular procedures to treat BTK lesions, we should be considered against the fact that there was no large randomized clinical trial with long-term data comparing DESs with the current BTK interventional standard of PTA.