Anemia in Heart Failure

Dong-Ju Choi, MD, PhD
College of Medicine
Seoul National University
Bundang Hospital
“Ceiling Benefit” of Neurohumoral blocking

Neurohormonal blocking appears to have reached a benefit plateau.

Presumed limit for CHF drug treatment

Reduction of CHF

ACE-inhibitors

Beta-blockers

Aldosterone B

ARBs

25%

50%

75%
Therefore, new targets for pharmacologic intervention are now being needed.

Potential Therapeutic Targets

- Wall stress
- Myocardial metabolism
- Ischemia
- Arrhythmias
- Anemia
- Renal insufficiency
- Sleep disorders

Mehra MR et al. J Am Coll Cardiol 2003;41:606-610
Anemia in General

- Increased tendency for the development of CHF
 - In general population
 - In elderly patients with normal renal function
 - In patients with ischemic heart disease
- Greater risk of end-stage renal disease
 - In anemic CHF patients

Anemia ⇒ a novel therapeutic target in CHF.
Anemia in CKD

- The treatment of anemic patients with renal failure
 - Reduce LV mass, LV volume and improve LVEF
 - If stop treatment, returned to previous levels
- Treatment of anemia in CKD before dialysis
 - A reduction in hospitalization for CHF
- In dialysis patient
 - The higher Hb, the lower the mortality and hospitalization
- Treatment of anemia improves CHF
- Anemia ⇒ a novel therapeutic target in CHF.
6.2.6. Patients With Anemia

Anemia is seldom the cause of HF in the absence of underlying cardiac disease. To be the sole cause of high-output HF, anemia must be severe (e.g., hemoglobin levels less than 5 g per deciliter). On the other hand, patients with HF frequently have anemia for a variety of reasons. The severity of anemia may contribute to the increasing severity of HF. Several studies have demonstrated worse outcomes in patients with HF and anemia (659, 660). It is unclear whether anemia is the cause of decreased survival or a result of more severe disease.

Several small studies have suggested benefit from use of erythropoietin and iron for treatment of mild anemia in HF (661-663). There is concern, however, that thromboembolic events may be increased. This therapy is undergoing further investigation.

7. END-OF-LIFE CONSIDERATIONS

RECOMMENDATIONS

Class I
1. Ongoing patient and family education regarding prognosis for functional capacity and survival is recommended for patients with HF at the end of life.
 (Level of Evidence: C)
Definition of anemia

- **WHO criteria**
 - Men: <13.0 g/dL
 - Women: <12.0 g/dL

- **National Kidney Foundation criteria**
 - Hb <12 g/dL in men and postmenopausal women
 - Hb <11 g/dL in premenopausal women
Prevalence of anemia in HF

- **Ranges from 4% to 55%**

<table>
<thead>
<tr>
<th>Study</th>
<th>Population</th>
<th>n</th>
<th>Definition of Anemia</th>
<th>Prevalence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Al-Ahmad et al. (4)</td>
<td>LV dysfunction +/- symptoms, clinical trial</td>
<td>6,563</td>
<td>Hct < 35%</td>
<td>4%</td>
</tr>
<tr>
<td>Tanner et al. (7)</td>
<td>Tertiary care HF clinic</td>
<td>193</td>
<td>Hb < 12</td>
<td>15%</td>
</tr>
<tr>
<td>Ezekewitz et al. (8)</td>
<td>New HF diagnosis, claims data</td>
<td>12,065</td>
<td>MD defined (ICD9 codes)</td>
<td>17%</td>
</tr>
<tr>
<td>Mozaffarian et al. (5)</td>
<td>Severe chronic HF, clinical trial</td>
<td>1,130</td>
<td>Hct < 37.6%</td>
<td>20%</td>
</tr>
<tr>
<td>Horwich et al. (9)</td>
<td>Heart transplant referrals single-center</td>
<td>1,061</td>
<td>Hb < 13 men, <12 women</td>
<td>30%</td>
</tr>
<tr>
<td>Kosiborod et al. (10)</td>
<td>Medicare patients, claims data</td>
<td>2,281</td>
<td>Hct ≤ 37%</td>
<td>48%</td>
</tr>
<tr>
<td>Felker et al. (38)</td>
<td>Acute decompensated HF, clinical trial</td>
<td>949</td>
<td>Hb < 13 men, <12 women</td>
<td>49%</td>
</tr>
<tr>
<td>Silverberg et al. (6)</td>
<td>Chronic HF, single-center trial</td>
<td>142</td>
<td>Hb < 12</td>
<td>55%</td>
</tr>
</tbody>
</table>

- Such variance associated with
 - Differences in the definition of anemia
 - Substantial differences in population studied
 - A lack of information about correctable causes of anemia

- Study of Anemia in a Heart Failure Population (STAMINA-HFP) registry: 33%.
Increased Risk of Anemia

1. Increasing age
2. Female gender
3. Chronic kidney disease
 (increased serum Cr or decreased GFR)
4. Decreased body mass index
5. Use of ACE inhibitors
6. Increased jugular venous pressure
7. Lower-extremity edema
Causes of anemia

Total n = 12,065 (anemia : 17%)

- Anemia of chronic disease (58% = 1,190)
- Iron deficiency (21% = 431)
- Other (13% = 226)
- Other deficiency (8% = 166)

Potential Cause of Anemia in CHF

LV dysfunction
- Decreased CO
- Renal Hypoperfusion

- RAS Activation
 - Sympathetic activation

- Plasma volume expansion

- RAS Inhibition
 - Pro-inflammatory Cytokine

- Decreased EPO Secretion
 - Decreased BM Response

- CKD

- Hemodilution

- Decreased RBC Production

Anemia
Mechanisms of anemia

1. Cytokines – TNF, IL-1, IFN
 - Reducing EPO production in kidney
 - EPO insensitivity at bone marrow level
 - Inhibiting iron release from RES
 - Bone marrow depression

2. Renal dysfunction
 - Cardio-renal-anemia syndrome
Mechanisms of anemia

3. Use ACE inhibitor
 - Decrease angiotensin II level; decreased stimulation of the proliferation of erythroid progenitor cells
 - Increasing N-acetyl-seryl-aspartyl-lysyl-proline (Ac-SDKP); hematopoiesis inhibitor
 - almost exclusively hydrolyzed by ACE,
 - partially eliminated in the kidney
 - SOLVED trial; more anemia by 56% in enalapril
Cardio-Renal-Anemia syndrome

Heart Failure
- ↑TNF-alpha
- ↓Perfusion
- Malnutrition
- ↓Perfusion
- RAS activation
- ↑Sympathetic tone
- ACE inhibitor therapy

Kidney
- Relative ↓ in EPO
- Ischemia
- Apoptosis
- LVH
- ↑Sympathetic tone
- Vasoconstriction
- Hemodilution

Bone Marrow
- EPO resistance
- ↓RBC Production

Anemia
Reduced kidney function and anemia as risk factors for mortality in patients with left ventricular dysfunction.

Mechanisms of anemia

Chronic heart failure
- **Hemodilution**
 - Plasma volume ↑
 - Intrinsic renal reabsorption RAAS / ADH ↑
- **Renal dysfunction**
 - EPO production ↓
 - EPO loss ↑
- **Inflammation**
 - TNF, IL-1, IFN
 - EPO production ↓
 - EPO activity ↓
 - Iron utilization ↓
- **Iron deficiency**
 - Iron uptake ↓
 - Iron utilization ↓
 - Occult bleeding

ACE inhibitor

Bone marrow suppression
- Tissue perfusion ↓
- EPO resistance
- Hemopoietic progenitor cell ↓

Anemia
Anemia Is Common in Heart Failure and Is Associated With Poor Outcomes
Insights From a Cohort of 12 065 Patients With New-Onset Heart Failure

Justin A. Ezekowitz, MBBCh; Finlay A. McAlister, MD, MSc; Paul W. Armstrong, MD

"Circulation. 2003;107:223-225"
Anemia Predicts Mortality in Severe Heart Failure

The Prospective Randomized Amlodipine Survival Evaluation (PRAISE)

Dariush Mozaffarian, MD, MPH,*† Regina Nye, MPH,‡ Wayne C. Levy, MD†

Seattle, Washington; and New London, Connecticut
Anemia & peak VO$_2$

Kalra PR et al. Am J Cardiol 2003;91:888-891
Progression to Symptomatic HF

SOLVD-Prevention trial

ELITE II trial

Optimal Hb for survival
- Male: 15.0 g/dL
- Female: 13.1 g/dL

Sharma R, Eur Heart J 2004;25:1021-1028
Anemia and Clinical Outcome

- Reduced hemoglobin in CHF associated with increased risk of hospitalization and all-cause mortality.
Management of Anemia

- Anemia; consistent association with adverse clinical outcome
 ⇒ Potential therapeutic target

- Potential treatment
 1. RBC transfusion
 2. Fe supplementation
 3. Erythropoietin
“Transfusion threshold”

- Hematocrit < 30% in CV disease
 - Based on expert opinion
- The clinical utility in CV disease is controversial.
- Transfusion may be considered as an acute treatment for severe anemia.
- Not appear to be strategy for the long-term management in CHF.
Transfusion

➢ Potential Risk

■ Infection
■ Immunosuppressive effect
■ Hemolytic reaction
■ Iron overload
■ Volume overload
Erythropoietin (EPO)

- 30.4-kD glycoprotein
- EPO encodes a protein with 165-amino acid structure.
- Regulator of erythroid progenitor cell
 - Inhibition of apoptosis
 - Increased proliferation
 - Increased differentiation
- Production of EPO
 - regulated by HIF-1 (HIF-1α, 1β, 3α)
Erythropoietin Receptor (EpoR)

Homodimerization to EpoR2
Three available Erythropoietin

1. Epoetin-α and
2. Epoetin-β:
 - rHuEpo, $T_{1/2}$ 6-8h
 - Since 1985
3. Dabepoetin-α:
 - N-linked supersialylated analog, $T_{1/2}$ 48h
 - Since 2001
Effect of EPO in Heart Failure

1. Severe, resistant CHF with mild anemia with EPO & Iron → ↑ LVEF, ↓ hospitalization
 (Silverberg et al. JACC 2001)

2. DM & severe, resistant CHF with mild anemia with EPO → ↑ LVEF, ↓ hospitalization
 (Silverberg et al. Nephrol Dial Transplant 2003)

3. Moderate to severe CHF treated with EPO → ↑ exercise duration
 (Mancini et al. Circulation 2003)
EPO in Heart Failure

The Use of Subcutaneous Erythropoietin and Intravenous Iron for the Treatment of the Anemia of Severe, Resistant Congestive Heart Failure Improves Cardiac and Renal Function and Functional Cardiac Class, and Markedly Reduces Hospitalizations

Donald S. Silverberg, MD, Dov Weizler, MD, Miriam Blum, MD, Gad Keren, MD, David Sheps, MD, Eyal Lifshitz, MD, David Brosh, MD, Shlomo Laniado, MD, Doron Schwartz, MD, Tatiana Yachnin, MD, Itzhak Shapira, MD, Dov Gavish, MD, Ron Baruch, MD, Bella Kofman, MD, Carl Kaplan, MD, Shoshana Steinbruch, RN, Adrian Laina, MD

Tel Aviv, Israel

<table>
<thead>
<tr>
<th></th>
<th>Initial</th>
<th>15 months F/U</th>
<th>Final</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hematocrit, vol%</td>
<td>30.14 ± 3.12</td>
<td></td>
<td>35.90 ± 4.22*</td>
</tr>
<tr>
<td>Hemoglobin, g%</td>
<td>10.16 ± 0.95</td>
<td></td>
<td>12.10 ± 1.21*</td>
</tr>
<tr>
<td>Serum ferritin, μg/liter</td>
<td>177.07 ± 113.80</td>
<td></td>
<td>346.73 ± 207.40*</td>
</tr>
<tr>
<td>Serum iron, μg%</td>
<td>60.4 ± 19.0</td>
<td></td>
<td>74.8 ± 20.7*</td>
</tr>
<tr>
<td>% iron saturation</td>
<td>20.5 ± 6.04</td>
<td></td>
<td>26.14 ± 5.23*</td>
</tr>
<tr>
<td>Serum creatinine, mg%</td>
<td>2.59 ± 0.77</td>
<td></td>
<td>2.73 ± 1.55</td>
</tr>
<tr>
<td>LVEF, %</td>
<td>27.7 ± 4.8</td>
<td></td>
<td>35.4 ± 7.6*</td>
</tr>
<tr>
<td>No. hospitalizations/patient</td>
<td>2.72 ± 1.21</td>
<td></td>
<td>0.22 ± 0.65*</td>
</tr>
<tr>
<td>Systolic BP, mm Hg</td>
<td>127.1 ± 19.4</td>
<td></td>
<td>128.9 ± 26.4</td>
</tr>
<tr>
<td>Diastolic BP, mm Hg</td>
<td>73.9 ± 9.9</td>
<td></td>
<td>74.0 ± 12.7</td>
</tr>
<tr>
<td>NYHA (0-4)</td>
<td>3.66 ± 0.47</td>
<td></td>
<td>2.66 ± 0.70*</td>
</tr>
</tbody>
</table>

*Statistically significant compared to baseline.
EPO in Heart Failure

Effect of Erythropoietin on Exercise Capacity in Patients With Moderate to Severe Chronic Heart Failure

Donna M. Mancini, MD; Stuart D. Katz, MD; Chim C. Lang, MD; John LaManca, PhD; Alhakam Hudaiehed, MBBS; Ana-Silvia Androne, MD

Control Group

EPO Group

Change in VO2 (ml/kg/min)

Change in Hemoglobin (gm/dl)

R=0.53, p<0.02

Circulation 2003;107:294-299
Advantages of EPO Therapy

1. Increase hemoglobin level
2. Increases peak O2 consumption
3. Improve functional class
4. Decreases ventricular remodeling
5. Improve cardiac and renal functions
6. Reduce diuretic dose
7. Reduce hospitalizations
8. Reduce mortality rate (small study)
Disadvantages of EPO Therapy

1. Increase hypertension
2. Increase thrombosis
3. Increase endothelin activation
4. Expensive
Pleiotropic Effect of EPO

1. Reduce oxidative stress
2. Promote neuronal survival after ischemia
3. Protect against ischemic vascular injury
4. Increasing Circulating EPC & BM stem cell
5. Angiogenesis
6. Mitogenic effect on cardiac myocytes
Carbamylated EPO

1. Bind to heterodimeric receptor
 - EpoR + βcR (common β receptor)
 (not to classic EPO homodimeric receptor
 - EpoR + EpoR)

2. No erythropoietic effect

3. Shows anti-apoptotic and cytoprotective effect
Erythropoietin reduces myocardial infarction and left ventricular functional decline after coronary artery ligation in rats

Chanil Moon*, Melissa Krawczyk*, Dongchoon Ahn*, Ismayil Ahmet*, Doojin Paik†, Edward G. Lakatta*, and Mark I. Talan**

*Laboratory of Cardiovascular Sciences, Gerontology Research Center, National Institute on Aging, Baltimore, MD 21224; and †Department of Anatomy and Cell Biology, Hanyang University, Seoul 133-791, Korea

Edited by Anthony Cerami, The Kenneth S. Warren Institute, Kitchawan, NY, and approved July 29, 2003 (received for review January 23, 2003)
Erythropoietin mediates tissue protection through an erythropoietin and common β-subunit heteroreceptor

Michael Brines*†, Giovanni Grasso*§§, Fabio Fiordaliso‖, Alessandra Sfacteria*§, Pietro Ghezzi*†, Maddalena Fratelli‖, Roberto Latini, Xiao-chen Xie*†, John Smart**, Chiao-ju Su-Rick*†, Eileen Pobre*†, Deborah Diaz*†, Daniel Gomez*†, Carla Hand*†, Thomas Coleman*†, and Anthony Cerami*†

*Kenneth S. Warren Institute and **Warren Pharmaceuticals, Ossining, NY 10563; ‖Mario Negri Pharmacological Research Institute, 20157 Milan, Italy; and §University of Messina, 98122 Messina, Italy

Contributed by Anthony Cerami, September 2, 2004

Motor recover after cord compression

Myocyte apoptosis

In βcR K-O mouse
Summary

1. Anemia is a frequent co-morbidity in HF
2. Anemia is an independent predictor of morbidity and mortality of the HF.
3. Anemia has emerged as a possible treatment target in HF.
4. But, larger controlled clinical trials are needed for further information and therapy guidelines.
Take Home Massage!

- Cannot be recommended for general CHF
 - No large well-designed study
 - No long follow-up study (most less than 1 year)
 - No trials about effect on CV mortality or hospitalization

- Recommendation based on the available data
 1. Hemoglobin level ≤12.0g/dl
 2. with repeated episode of ADHF
 3. and already receiving maximally therapy