Recent Advancement of Cardiac CT

Mario J Garcia, MD, FACC, FACP Director, Non-Invasive Cardiology Professor of Medicine and Radiology Mount Sinai School of Medicine

* Disclosure: grant support from Philips Medical Systems

Non-Invasive Coronary Angiography Potential Utility of MDCT

- Utilization:
 - 2 Million catheterizations in 2000
 - 340% increase from 1980 to 2000
- Increasing cost:
 - \$11,232 in 1993 per procedure
 - \$16,838 in 2000*
- High number of unnecessary procedures⁺:
 - 40% of women
 - 20-25% of men
- Small but definable risk:
 - 2% major complications (JCA Guidelines, 1999)
- 3-5% patients presenting with CP to ED develop MI

*Agency for Healthcare Research and Quality, Healthcare Cost and Utilization Project, HCUPnet, Washington, DC, 2000. †Kugelmass AD. J Am Coll Cardiol 2001;37:497A.

Limitations of the Standard of Care

- Invasive coronary angiography cannot be performed in all patients at risk
- Stress testing has insufficient accuracy:
 - 1) To establish or exclude CAD as the cause of chest pain
 - 2) To establish or exclude CAD in the asymptomatic patient at risk

Multi-Detector CT Imaging Coronary Arteries

MDCT-CA vs Cath Per-Segment Analysis (16r)

Author (vear)	No. <u>Subjects</u>	No. Segments	Sens (%)	Spec (%)	NPV (%)	PPV (%)
Hoffman (2005)	103	1384	95	98	99	87
Kuettner (2005)	72	936	82	98	97	87
Mollet (2005)	51	610	95	98	99	87
Mollet (2004)	128	1384	92	95	98	79
Martuscelli (2004)	*5-25	5 % ex	clud	ed seg	gmen	ts 90
Kuettner (2004)	58	763	72	97	97	72
Ropers (2003)	77	308	92	93	97	79
Nieman (2002)	58	231	95	86	97	80
Dewey (2004)	34	136	88	91	95	88

Images from the: CATSCAN Trial

Coronary Assessment by Computed Tomographic Scanning and Catheter Angiography: A Multi-Center Trial

Cleveland Clinic Foundation, Cleveland Mario Garcia [PI] Washington Hospital Center, Washington DC Augusto Pichard St. Elizabeth's Hospital, Boston Jeff Mendel Vanderbilt University, Nashville Ronald Arildsen University of Maryland Medical Center, Baltimore Charles White Ochsner Clinic Foundation, New Orleans John Reilly Rambam Hospital, Israel Eddie Gershin University Medical Center, Utrecht Matthias Prokop St. Mary's Hospital, London Andrew Wright Klinik München-Pasing, Germany Ralph Haberl Teikyo University Hospital, Japan Shigeru Suzuki Universitätsklinikum Ulm, Germany Martin Hoffman [CT Core Lab]

Garcia et al, JAMA 2006;296:4003-11

CATSCAN TRIAL Demographics

238 patients enrolled

Symptoms	
 Typical angina 	137 (58%)
 Atypical angina 	60 (25%)
 Non-anginal CP 	40 (17%)
Clinical Stratum	
 Intermediate 	116 (49%)
• High	122 (51%)
Stress test within a year	154/193
• Positive	118/154
• Equivocal	19/154
	 Symptoms Typical angina Atypical angina Non-anginal CP Clinical Stratum Intermediate High Stress test within a year Positive Equivocal

*Patients with at least one vessel with >50% stenosis: 39% Garcia et al, JAMA 2006;296:4003-11

CATSCAN TRIAL

Table 2. Accuracy Parameters for Segment-Based and Patient-Based Detection of More Than 50% Coronary Stenosis

	All Segments for Analysis With Nonevaluable Segments "Positive" (n = 1629)	Segments for Analysis Only (n = 1157)*	All Patients for Analysis and Patients With Nonevaluable Segments "Positive" (n = 187)	Patients for Analysis Only (n = 187)†
Stenoses by conventional angiography, No.	89	65	59	59
Stenoses by MDCT, No.	623	151	117	73
False-positive, No.	544	96	58	29
False-negative, No.	10	10	1	15
Sensitivity, % (95% Cl)	89 (82-95)	85 (76-96)	98 (95-100)	75 (63-86)
Specificity, % (95% Cl)	65 (62-67)	91 (90-92)	54 (45-63)	77 (70-85)
Positive predictive value, % (95% Cl)	13 (10-15)	36 (29-44)	50 (41-59)	60 (49-72)
Negative predictive value, % (95% Cl)	99 (98-100)	99 (98-100)	99 (965100)	87 (81-93)
<i>P</i> value for site‡		.25		.10

Abbreviations: CI, confidence interval; MDCT, multidetector computed tomography.

*Excludes 472 (29%) of 1629 segments considered nonevaluable.

†Excludes nonevaluable segments in the counts of stenosis by MDCT.
‡Calculated by bivariate logistic model used to test for variance in accuracy parameters among different participating sites.

Vascular and Cardiac Imaging Multi-Detector CT

 $\frac{1}{2}$ rotation = 200 ms

4 x 1.0 mm 4 x 1.0 mm 16 x 0.75 mm 40 x 0.625 mm 64 x 0.625 mm

Coverage and Breath-hold

Results with high-detector MDCT-CA Per-patient Analysis (64-r)

Author (year)	No. Subjects	Sens (%)	Spec (%)	NPV (%)	PPV (%)
Mollet (2005)	51	100	92	100	97
Leschka (2005)	53	100	100	100	100
Ropers (2006)	82	96	91	98	83
Raff (2004)	70	95	90	93	93

Current limitations of CTA

- Limited Spatial Resolution
- Limited Temporal Resolution
- X-ray dose limitation
- Arrhythmias
- Limited quantification and functional information

0.5-0.6mm 200-250ms 10-20mSv 6-8beats

Overestimation of calcified plaque volume

м s 🔋 s м M G/07

Factors that Limit Resolution

Limitations of CT Coronary Angiography High CACS

- 60 non-selected patients with suspected CAD
- MDCT 12 × 0.75 mm CTA
- 2 excluded due to VT and breathing artifacts
- All (n=58): Sens 97%, Spec 77%
- CACS < 1000 (n=46): Sens 98%, Spec 98%

Improving Spatial Resolution

Reduction of Stent Artifacts z-Sharp Technology

Bx Velocity 3x18mm **Resolution <0.4mm** with z-Sharp

*Courtesy of Siemens Medical Solutions

MG/07

Diagnostic Accuracy of Coronary In-Stent Restenosis Using 64-Slice Computed Tomography

Comparison With Invasive Coronary Angiography

Mariko Ehara, MD, Masato Kawai, RT, Jean-François Surmely, MD, Tetsuo Matsubara, MD, Mitsuyasu Terashima, MD, Etsuo Tsuchikane, MD, Yoshihisa Kinoshita, MD, Tatsuya Ito, MD, Yoshihiro Takeda, MD, Kenya Nasu, MD, Nobuyoshi Tanaka, MD, Akira Murata, MD, Hiroshi Fujita, MD, Koyo Sato, MD, Atsuko Kodama, MD, Osamu Katoh, MD, Takahiko Suzuki, MD

Toyohashi, Japan

- 81 consecutive patients from single institution
- PPV 63%, NPV 99%
- Only 10% stents <3 mm

Future Directions: Flat Pannel Technology

ж М S [©] S M <mark>MG/07</mark>

Improving Spatial Resolution

Improving Spatial Resolution Flat Panel Technology

Human heart specimen with contrast filled vessels

RCA

Improving Spatial Resolution

X-ray density Detector Size Gantry rotational speed

Improving Temporal Resolution

Direction of scan

Improving Temporal Resolution

Single source CT *Temporal resolution of maximum 165 ms*

*Courtesy of Siemens Medical Solution

Improving Temporal Resolution *Multi-Cycle Reconstruction*

Temporal Resolution = f(gantry rotation time, angle)

Manzke, Med Phys 2003;30:3072 *Courtesy of Philips Medical Systems

Evaluation of Transplant CAD

Table 1. Diagnostic Accuracy of Multidetector ComputedTomographic Angiography to Detect >50% CoronaryObstruction

	Segments	Vessels	Patients
True-positive	43	29	15
True-negative	703	119	29
False-positive	10	10	8
False-negative	7	1	1
Sensitivity*	86% (75–96)	97% (89-100)	94% (79-100)
Specificity*	99% (98-100)	92% (87-97)	79% (64–93)
Positive predictive value*	81% (70-92)	74% (59–88)	65% (44-86)
Negative predictive value*	99% (98-100)	99% (97-100)	<u>97% (89–100</u>)

*Percentages (95% confidence intervals).

Heart rate: 98, Subject nr. 13

Sigurdsson, J Am Coll Cardiol 2006;48;772

Evaluation of Transplant CAD

Sigurdsson, J Am Coll Cardiol 2006; Augus

Dual Source CT: Two X-ray sources and two detectors at the same time

Journal of the American College of Cardiology © 2007 by the American College of Cardiology Foundation Published by Elsevier Inc.

Vol. 50, No. 8, 2007 ISSN 0735-1097/07/\$32.00 doi:10.1016/j.jacc.2007.04.068

segments were included for analysis.

Limitations of MDCT

Estimating Risk of Cancer Associated With Radiation Exposure From 64-Slice Computed Tomography Coronary Angiography

Andrew J. Einstein, MD, PhD
Milena J. Henzlova, MD, PhD
Sanjay Rajagopalan, MD

Context Computed tomography coronary angiography (CTCA) has become a common diagnostic test, yet there are little data on its associated cancer risk. The recent Biological Effects of Ionizing Radiation (BEIR) VII Phase 2 report provides a framework for estimating lifetime attributable risk (LAR) of cancer incidence associated with ra-

Diagnostic Procedure	Typical effective dose (mSv)	Equivalent period of natural background radiation*	Risk of fatal cancer/exam**
Natural background	~3 (1.5-7.5)	1 year	
Limbs and joints (except hips)	< 0.01	< 1.5 days	1 in a few million
Teeth (panoramic)	0.01	< 1.5 days	1 in 2 million
Chest (single PA film)	0.02	3 days	1 in a million
Transatlantic flight	0.03	4.5 days	1 in 700 000
Transatlantic Concorde flight	0.06	9 days	1 in 350 000
Cervical spine (neck)	0.08	2 weeks	1 in 200 000
Lung ventilation (81mKr)	0.1*	2.4 weeks	1 in 200 000
Нір	0.3	7 weeks	1 in 67 000
Thoracic spine or abdomen	0.7	4 months	1 in 30 000
Lung perfusion (99mTc)	1	6 months	1 in 20 000
Kidney (99mTc)	1	6 months	1 in 200 000
Thyroid (99mTc)	1	6 months	1 in 200 000
Barium swallow	1.5	8 months	1 in 13 000
CT head	2	1 year	1 in 10 000
IVU (kidneys and bladder)	2.5	14 months	1 in 8000
Bone (99mTc)	4	2.3 years	1 in 5000
Dynamic cardiac (99mTc)	6	2.7 years	1 in 3300
16-slice cardiac CTA	6-8		
Barium enema	7	3.2 years	1 in 3000
CT abdomen/pelvis	10	4.5 years	1 in 2000
40-slice cardiac CTA	10-12		
Myocardial perfusion (201TI)		8 years	1 in 1100
64-slice cardiac CTA	15-25		

* the risk of death by exposure to 0.1 mSv is the same as that of smoking one cigarette or drinking half a bottle of wine MG/07

X-ray attenuation

Improving X-ray Dose Efficiency

Prospective tube current dose modulation

Improving X-ray dose efficiency

	Non-modulated	Modulated 50-	Modulated 75%
400 Mas	9.5 mSv	8 mSv	6mSv
500 Mas	11.8 mSv	9.9 mSv	7.5 mSv
600 Mas	14.2 mSv	11.1 mSv	9.0 mSv
700 Mas	17.0 mSv	14.0 mSv	10.8 mSv
800 Mas	19.4 mSv	16.0 mSv	11.8 mSv
900 Mas	21.9 mSv	18.1 mSv	13.3 mSv

* Based on 145 mm coverage (15 sec acquisition), using a 40 detector scanner

Determining "motionless" phase *Tissue Doppler Echocardiography*

Hesse, Am J Cardiol, 2006

Tissue Doppler Imaging Guided Prospective Tube Current Modulation in Cardiac MDCT

- 94 patients enrolled
- 25 patients with dose-modulated studies
 - 296 segments > 1.5 mm analyzed
 - 8 (3%) not analyzable
 - Sensitivity 92%
 - Specificity 94%
 - PPV 65%
 - NPV 99%
- Correlation between QCA and MDCT:
 - r = 0.70, p < 0.001

Determining "motionless" phase *Tissue Doppler Echocardiography*

Hesse, Am J Cardiol, 2006

Retrospective Gated Imaging \bigwedge

Prospective Gated Imaging

Improving Arrhythmia Artifacts

Heart Rate variations

Common Phase Selection Methods ECG gating

Fixed time offset
Example: 500 ms before R peak
Window centered at -500 ms

Percentage of R-R interval
Example: 60% of R-R interval
For 60 bpm, R-R interval = 1000
Window centered at 600 ms

Delay Algorithm ®

delay = *RRInterval* * *PercentageDelay* + *DelayOffset*

- Assumes reference heart rate of 72 bpm (common resting heart rate)
- As patient heart rate deviates from 72 bpm, the delay is adjusted so as to identify the *same physiological* phase of the cardiac cycle.

"*Algorithm for acquiring/reconstructing any phase of the heart cycle in Multislice Cardiac CT,"* S. Chandra, D. Heuscher, M. Vembar, U. Shreter, M. Garcia. Med Physics 2000"

Without correction

With correction

Pitch in MDCT imaging

Intermediate Pitch

Low Pitch

Pitch in MDCT imaging

Future Direction: Full Volume CT

Improving Quantification and Functional Assessment

Tissue Characterization by MDCT

- X-rays are attenuated by tissue
- Attenuation is proportional to tissue density and element composition
- Measured in Hounsfield units (HU)
- Lower attenuation shown as "black", higher attenuation showed as "white"
- Typical mean values:
 - Air -1000
 - Fat -100

 $\left(\right)$

300

800

- Water
- Soft Tissue 100
- Contrast
- Calcium

MDCT in CAD-Wall Plaque

MDCT in CAD-Wall Plaque

MDCT in CAD-Wall Plaque Comparison with IVUS

•40 patients, 194 segments
•277 plaques

•185 Soft
•45 fibrocalcific
•43 calcific

•Sens 86
•Spec 92

Carrascosa, Am J Cardiol 2006

MDCT in CAD-Wall Plaque Quantification

- Only 3-dimensional with complete volume coverage
- Non-invasive
- Limited spatial resolution
- Prone to motion artifacts
- No quantification standards

*Courtesy of Philips Medical Systems

MDCT Coronary Plaque Quantification Differentiation and Plaque Burden Measurement

*Courtesy of Vital Images

Imaging inflammation in Plaque NC1177

Hyafil, Nature Medicine 2007;13:636-4

MDCT in Acute Myocardial Infarction *From Perfusion Defect to the Culprit Lesion*

Paul, Circulation 2003;108:373

Contrast velocity map

Koyama, in progress

Case 2 (normal coronary artery)

Contrast velocity map

Koyama, in progress

Computer Assistance to Optimize 2-D Projection Images

*Courtesy of Philips Medical Systems

Computer Assistance to Optimize 2-D Projection Images

Chen & Carroll. 3-D reconstruction of coronary artery tree to optimize angiographic visualization. IEEE Transactions on Medical Imaging. Vol 19: April, 2000. Pp 318-336.

Courtesy of Philips Medical Systems

Future directions in cardiac CTA

- Improved detector technology- 10-20% reduction in dose, improvement in spatial resolution?
- Lower component weight, reduced friction and gravitational forces, multi-tube/detector systems-improvement in temporal resolution
- Improved tube modulation efficiency- 20-30% reduction in dose
- Quantification and functional assessment: "non-calcified" plaque score, automated LV mass, EF, myocardial perfusion, multimodality co-registration, novel contrast agents

