Mid-term Angiographic Follow-Up After OPCAB

Ki-Bong Kim, MD, PhD

Dept. of Thoracic & Cardiovascular Surgery Seoul National University Hospital Seoul, Korea

Is Off-Pump CABG Really Better Than On-Pump CABG?

- Prospective, Randomized Trials
- Large Population Studies
- Literature Reviews / Meta-analyses

Prospective, Randomized Trials of OPCAB vs Conventional On-Pump CABG; *Mortality*

Triolo	OP	САВ	On-Pur	Pump CABG	
Trials —	#	Mortality	#	Mortality	
Van Dijk (NEJM 2003)	139	0	142	0	
Angelini (Lancet 2002)	201	2	200	0	
Puskas (JTCVS 2003)	99	2	98	1	
PRAGUE-4 (ATS 2004)	184	2	204	4	
Khan (NEJM 2004)	50	0	54	0	
TOTAL	673	6 (0.9%)	698	5 (0.7%)	

Prospective, Randomized Trials of OPCAB vs Conventional On-Pump CABG; *Stroke*

Triele	OP	САВ	On-Pur	On-Pump CABG	
Trials —	#	Stroke	#	Stroke	
Van Dijk (NEJM 2003)	142	1	139	2	
Angelini (Lancet 2002)	200	0	201	0	
Puskas (JTCVS 2003)	98	1	99	2	
PRAGUE-4 (ATS 2004)	204	0	184	2	
Khan (NEJM 2004)	54	?	50	?	
TOTAL	698	2 (0.3%)	673	6 (0.9%)	

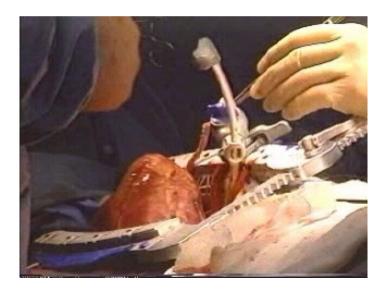
Prospective, Randomized Trials of OPCAB vs Conventional On-Pump CABG; *Transfusions*

	0	РСАВ	On-Pu	ump CABG			
Trials	#	Transfusion (%)	#	Transfusion (%)			
Van Dijk (NEJM 2003)	142	28	139	29			
Angelini (Lancet 2002)	200	18	201	49			
Puskas (JTCVS 2003)	98	26	99	44			
PRAGUE-4 (ATS 2004)	204	49	184	51			
Khan (NEJM 2004)	54	37	50	65			
TOTAL	698	31%	698	45%			
	n < 0.01						

p < 0.01

Prospective, Randomized Trials of OPCAB vs Conventional On-Pump CABG; *Atrial Fibrillation*

Trials -	OP	САВ	On-Pump CABG		
Thats	#	AF (%)	#	AF (%)	
Van Dijk (NEJM 2003)	-	-	-	-	
Angelini (Lancet 2002)	200	12	201	37	
Puskas (JTCVS 2003)	98	16	99	22	
PRAGUE-4 (ATS 2004)	204	20	184	24	
Khan (NEJM 2004)	-	-	-	-	
TOTAL	502	15%	484	29%	



New York State CABG Database 1997-2000 JACC 2004

	OPCAB	On-Pump CABG	p
Ν	9,135	59,044	
Risk-adjusted Mortality	2.02%	2.16%	0.39
Stroke	1.6%	2.0%	0.003
Reop Bleeding	1.6%	2.2%	<0.001
Hospital stay	5 days	6 days	0.001

Comparison of coronary bypass surgery w/ & w/o cardiopulmonary bypass in patients with MVD. Isolated CABG Mack MJ. JTCVS 2004 17,401 7,283(41.9%) 10,118 (58.1%) **OPCAB** OnPump 4 experienced centers in OPCAB Op Mort 3-y period **Op Mort** 1.9% 3.5% 11,548 propensity score matched CPB risk for mortality (All pts) OR 2.08 CI 1.52-2.83 OPCAB p < 0.01 Less Transfusion 32.6% vs 40.6% Stroke p=0.002 1.4% vs 2.1% Renal Failure p< 0.001 2.6% vs 5.2% Pulmonary Comp p<0.001 4.1% vs 9.5% 1.7% vs 3.2% p<0.001 Reop 21.1% vs 24.9% p<0.001 AF

Is Off-Pump CABG Really Better Than On-Pump CABG?

Graft Patency? Early & Mid-term

A randomized comparison of off-pump and on-pump multivessel coronary-artery bypass surgery; 3 mo results *Kahn NE.* N Engl J Med 2004;350:21

Variable	On-Pump Group	Off-Pump Group	P Value	Absolute Difference (95% CI)
Pa <u>tency rate — no./total no. (%)</u>				
Overall	127/130 (98)	114/130 (88)	0.002	10 (3.8 to 16.2)
Left anterior descending artery	40/40 (100)	35/38 (92)	0.07	8 (-0.1 to 16.5)
Circumflex artery	35/37 (95)	33/38 (87)	0.25	8 (-5.3 to 20.7)
Right coronary artery	35/35 (100)	31/37 (84)	0.01	16 (4.3 to 28.1)
Pedicled left internal thoracic artery	47/47 (100)	46/50 (92)	0.05	8 (0.5 to 15.5)
Radial artery	22/22 (100)	26/34 (76)	0.01	24 (9.3 to 37.8)
Saphenous vein	56/59 (95)	40/44 (91)	0.42	4 (-6.1 to 14.2)
Quantitative coronary angiography†				0.5 50
Reference diameter — mm	2.06±0.40	2.11±0.64	0.65	0.50 (-0.29 to 0.19)
Luminal diameter — mm	1.63±0.68	1.46±0.93	0.37	0.17 (-0.20 to 0.54)
Stenosis — % of reference diameter	21.19±26.38	34.67±34.53	0.06	-13.48 (-27.51 to 0.55)

* Plus-minus values are means ±SD. CI denotes confidence interval.

† Follow-up angiographic data were available for 39 patients in the on-pump group and 43 in the off-pump group.

Clinical and radiologic outcome of OPCAB at 12 mo follow-up: a prospective randomized trial *Lingaas PS.* Ann Thorac Surg 2006;81:2089

Graft Localization	Time Point (mos)	Off-Pump	On-Pump	
IMA	00	55/57 (97%)	57/58 ^a (98%)	
IMA	0	57/57 (100%)	57/58 ^a (98%)	
IMA	3	52/54 (96%)	58/59 (98%)	
IMA	12	48/51 (94%)	54/56 (96%)	
Vein grafts total	00	87/91 (96%)	100/102 (98%)	
Vein grafts total	0	88/91 (97%)	100/102 (98%)	
Vein grafts total	3	72/86 (84%)	95/104 (91%)	
Vein grafts total	12	67/84 (80%)	84/97 (87%)	

Early randomized comparison of off-pump and on-pump multiple arterial coronary revascularization *Kobayashi J. Circulation 2005;112[suppl I]:I-338*

TABLE 5. Early Graft Patency Without Stenosis According to Graft Material and Sites

	Off-Pump	On-Pump	P Value
Graft material			
ITA	116/125 (93)	135/144 (94)	0.81
Radial artery	110/116 (95)	128/129 (99)	0.055
Composite	56/59 (95)	69/72 (96)	>0.99
GEA	19/22 (86)	22/23 (96)	0.34
Saphenous vein	16/17 (94%)	9/9 (100)	0.99
Bypass sites			
LAD area	118/125 (94)	124/129 (96)	>0.99
Circumflex area	83/88 (94)	98/103 (95)	>0.99
RCA area	60/67 (90)	72/73 (99)	0.028
GEA	18/21 (86)	19/19 (100)	0.23
Total	261/280 (93)	294/305 (96)	0.093

Mid-term Angiographic Follow-Up After OPCAB:

Serial Comparison Using Early, 1-year, & 5-year Postoperative Angiographies

김기봉, 이해영, 강현재, 구본권, 김효수, 손대원, 오병희, 박영배

Seoul National University Hospital Seoul, Korea

Patients & Methods (1)

- Jan. 1998 ~ Dec. 2001
- 240 (59.7%) of 402 OPCAB pts
 - Received early, 1-y, & 5-y angiographies,

regardless of anginal symptoms

- Exclusion criteria for anigographic follow-up : pts who died, refused angiographic evaluation, or had renal function impairment

Patients & Methods (2)

- Coronary angiographies
 - Early postoperative (Postop D 1.6 ±1.6)
 - ▶ 1-y (Postop Mo 13.2 ± 5.2)
 - ▶ 5-y (Postop Mo 59.9 ± 5.7)
- Retrospective coronary angiographic review
- FitzGibbon grading system
- Single surgeon in a single center

FitzGibbon Grading System

FitzGibbon et al. Circulation 1978;57:1070

- Grade A: an excellent graft w/ unimpaired run-off
- Grade B: > 50% stenosis at the anastomosis or trunk
 Grade A + B : patent
- Grade O: occlusion

* Grade B : Competitive graft flow ; distal graft as well as distal native grafted coronary artery flow not clearly opacified as seen by graft angiography, but well-visualized graft retrogradely as seen by native coronary angiography

Aims of This Study

- Serial comparison of the graft patency rates in pts who had received angiographies early postoperatively, 1 y & 5 y after OPCAB
- Evaluation of the graft patency rates based on target territories & revascularization strategies during the 5 postoperative years
- Assessment of the serial changes of FitzGibbon B stenotic grafts during the 5 postoperative years

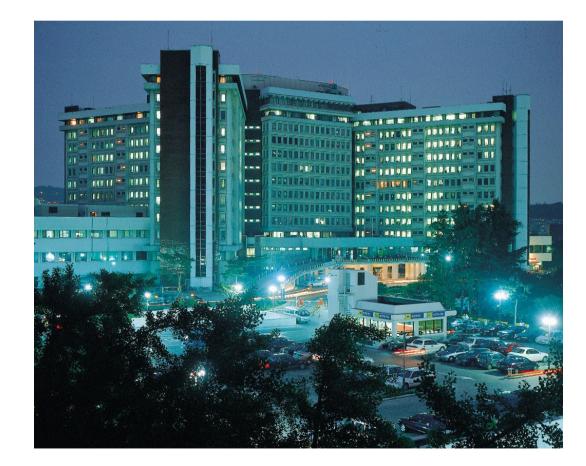
Preop Characteristics & Risk Factors (I)

Patient Characteristics	N = 240
Sex (M / F)	158 / 82
Age (y)	61 ± 9
Unstable / stable angina	191 / 49
Angiographic diagnosis	
3-vessel disease	148 (61.7%)
2-vessel disease	57 (23.8%)
Left main disease w/ or w/o peripheral disease	64 (26.7%)

Preop Characteristics & Risk Factors (II)

Risk factors	N = 240
Hypertension	144 (60.0%)
Diabetes mellitus	83 (34.6%)
Hyperlipidemia	63 (26.3%)
History of Stroke	27 (11.3%)
LVEF <35%	13 (5.4%)
Chronic renal failure	5 (2.1%)
Urgent / emergent	33 (13.8%)

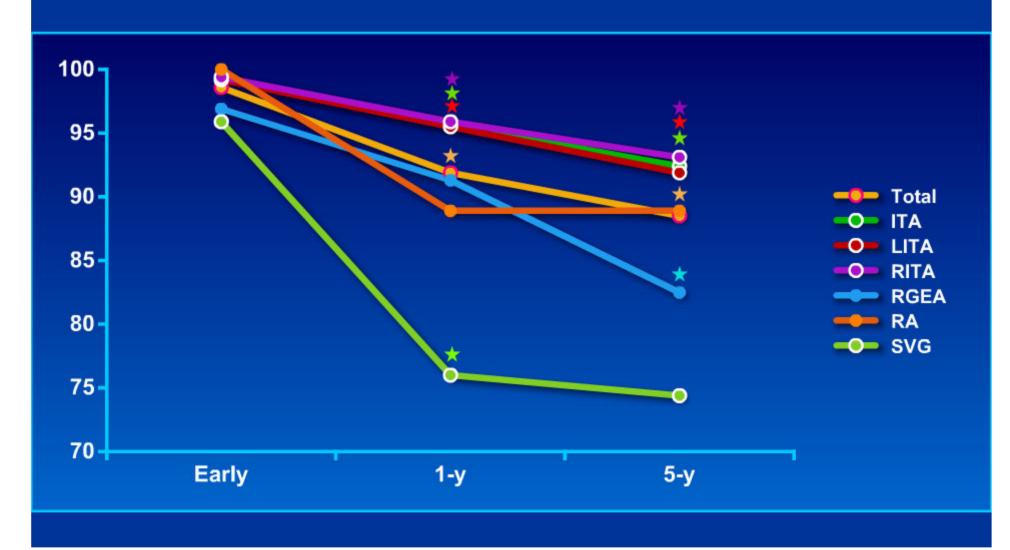
Operation


 A standard skeletonizing technique for harvesting the ITA & RGEA
 Anticoagulation ; Heparin : 1.5 mg/kg ACT during OPCAB : > 300 sec Protamine reversal ; none

Halted aspirin (300mg/d) the day before surgery & resumed it one day postoperatively

Grafts & Their Target Coronary Arteries

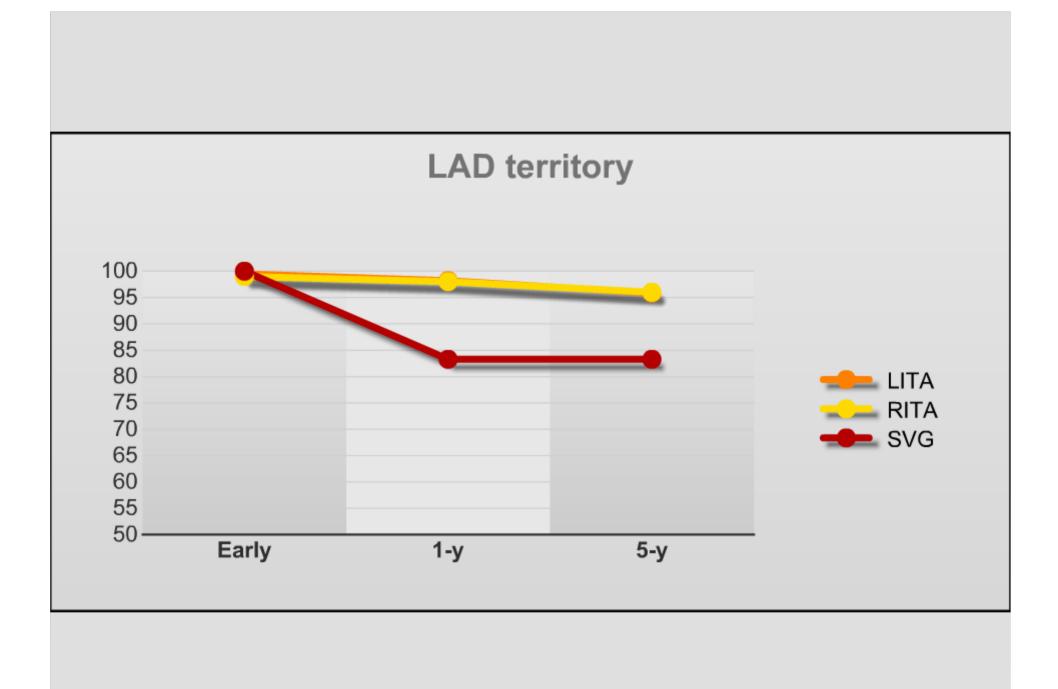
Graft	LAD	D	RI	OM	RCA	PDA	PLB	Total
ITA	222	100	29	141	17	15	3	527
Left ITA	148	74	17	69			1	309
Right ITA	74	26	12	72	17	15	2	218
RGEA				6	13	59	2	80
RA	1	2	1	4			1	9
SV	7	23	6	43	20	19	3	121
Total	230	125	36	194	50	93	9	737

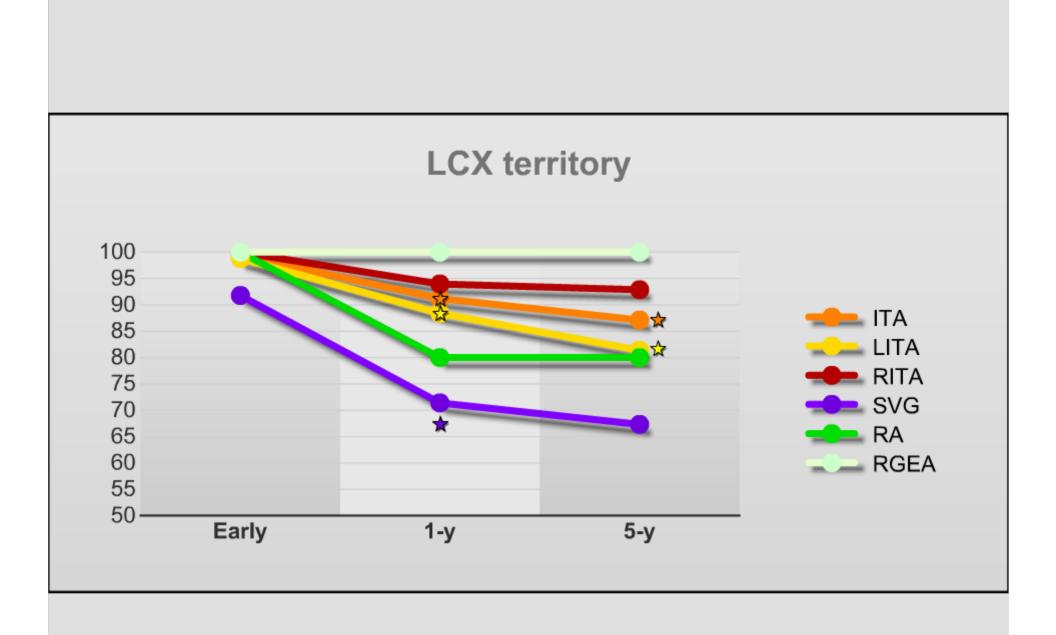

Results

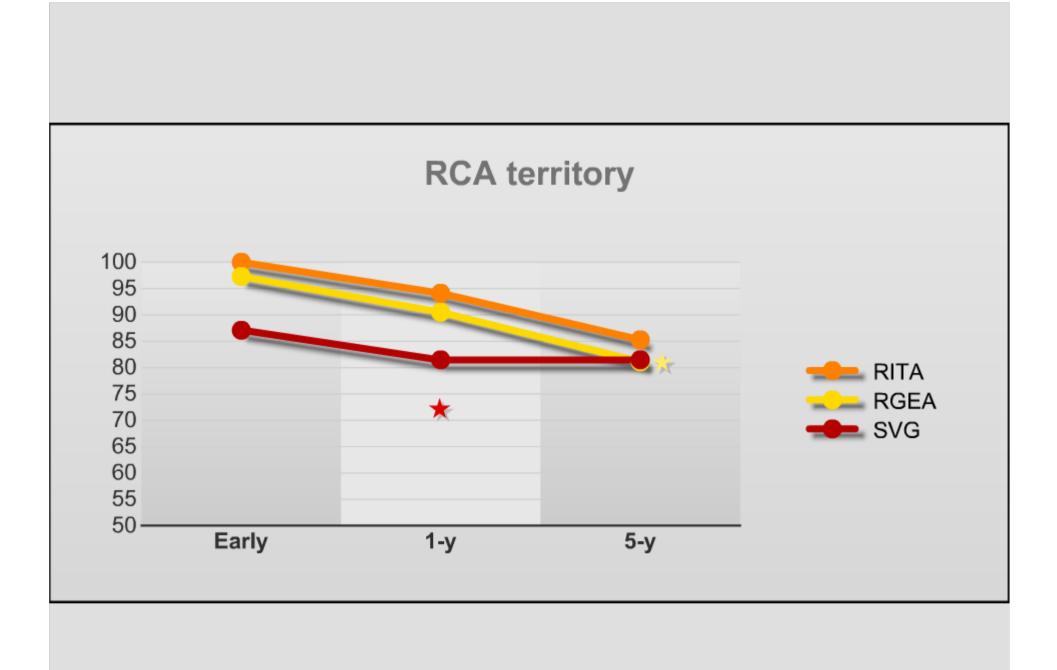
Serial Angiographic Patency Rates

	Early	1-y	5-у		
ITA	99.4% (524/527)	95.6% (504/527) ^a	92.4% (487/527) ^b		
Left ITA	99.4% (307/309)	95.5% (295/309) ^a	91.9% (284/309) ^d		
Right ITA	99.5% (217/218)	95.9% (209/218) ^c	93.1% (203/218) ^d		
RGEA	97.5% (78/80)	91.3% (73/80)	82.5% (66/80) ^d		
Radial artery	100% (9/9)	88.9% (8/9)	88.9% (8/9)		
Saphenous vein	95.9% (116/121)	76.0% (92/121)ª	74.4% (90/121)		
Total	98.6% (727/737)	91.9% (677/737) ^a	88.3% (651/737) ^b		
^a $p < 0.001$ between early & 1-y ; ^b $p < 0.001$ between 1-y & 5-y ^c $p < 0.05$ between early & 1-y; ^d $p < 0.05$ between 1-y & 5-y					

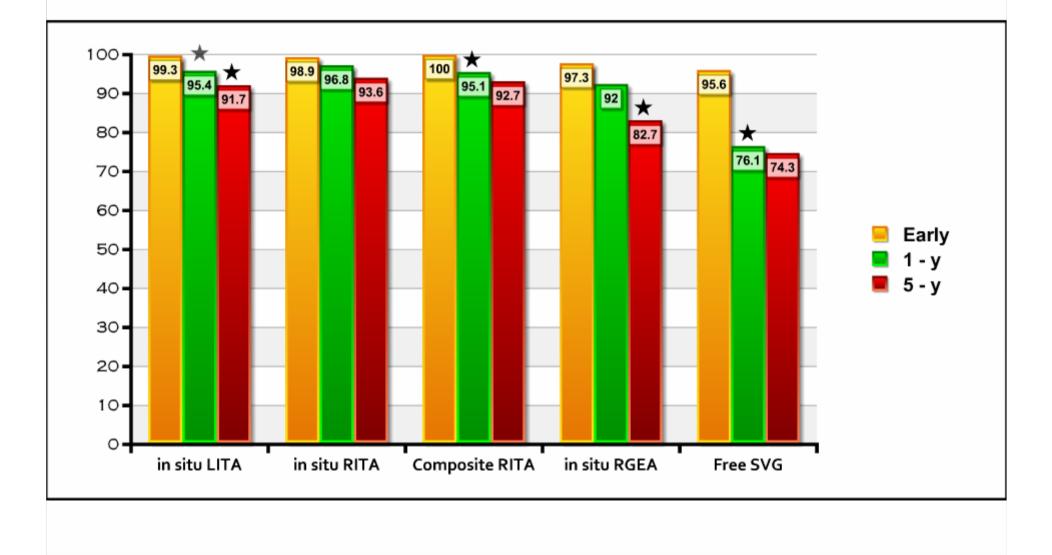
Serial Angiographic Patency Rates



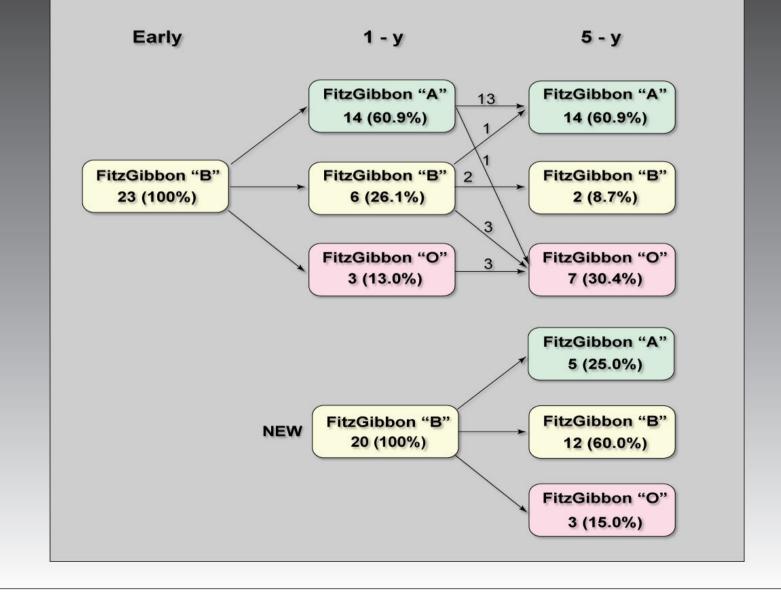

Serial changes of graft patency rates according to target coronary artery territories


Overall Graft Patency Rates

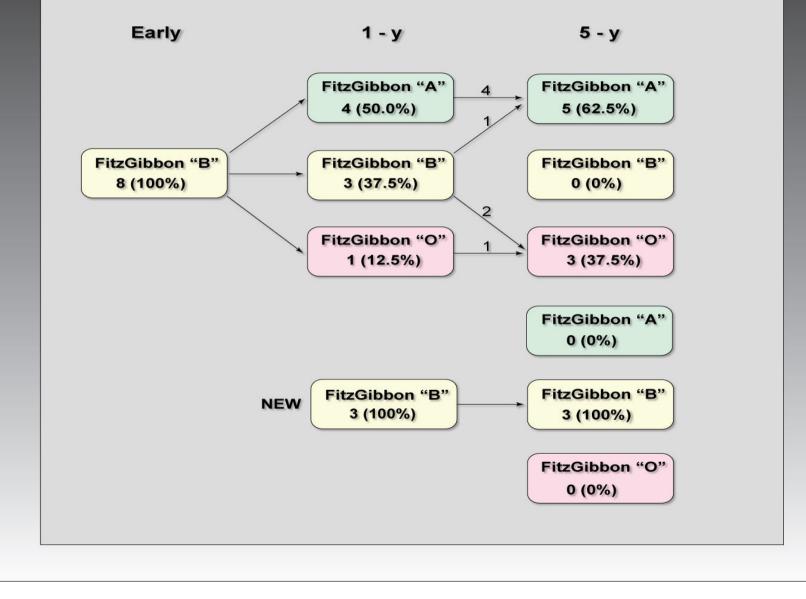
	LAD territory	LCX territory	RCA territory
Early	99.4% (353/355)	97.8% (225/230)	98.0% (149/152)
1-у	96.9% (344/355)	87.8% (202/230)*	86.2% (131/152)
5-у	94.9% (337/355)	83.0% (191/230)*	* 80.9% (123/152)


p < 0.001 when compared w/ LAD territory

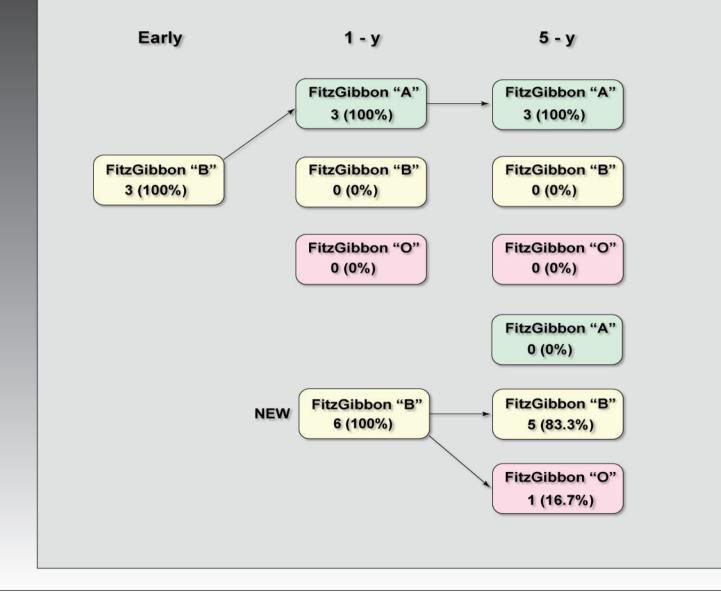
Changes of the Graft Patency According to Proximal Techniques


Fates of FitzGibbon Grade B Lesions

ITA 4.4% (23/524) 5.2% (26/504) 6.0% (29/487 RGEA 10.3% (8/78) 8.2% (6/73) 6.1% (4/66)		Early	1-у	5- y
RGEA 10.3% (8/78) 8.2% (6/73) 6.1% (4/66)	Arterial Grafts	5.1% (31/602)	5.5% (32/577)	6.0% (33/553)
	ITA	4.4% (23/524)	5.2% (26/504)	6.0% (29/487)
Saphenous vein 2.6% (3/116) 6.5% (6/92) 13.3% (12/90)	RGEA	10.3% (8/78)	8.2% (6/73)	6.1% (4/66)
	Saphenous vein	2.6% (3/116)	6.5% (6/92)	13.3% (12/90) ^a


p < 0.01 between early & 5-y

Fates of FitGibbon Grade B lesions


- Internal thoracic artery-

Fates of FitGibbon Grade B lesions - Right gastroepiploic artery-

Fates of FitGibbon Grade B lesions - Saphenous vein-

Recurrence of Angina & Target Vessel Revascularization

	1 st postop year	Between 1-y & 5-y
Angina Recurren	ce 10 / 240 (4.2%)	31 / 240 (12.9%)
Graft-related	6 / 240 (2.5%)	18 / 240 (7.5%)
Progression	4 / 240 (1.7%)	13 / 240 (5.4%)
Treatment	- TVR 4 (PCI 3, Reop 1) - Non-TVR 2 (PCI 2) - Medications 4	- TVR 10 (PCI 9, Reop 1) - Non-TVR 7 (PCI 7) - Medications 14

Graft Patency Rates OPCAB vs conventional CABG

Graft	Time	OPCAB (n = 240)	Conv- CABG (n = 109)	P-VALUE
ITA	1-Y	504/527(95.6)	141/144(97.9)	0.328
	5-Y	487/527(92.4)	130/144(90.3)	0.489
SVG -	1-Y	92/121(76.0)	187/227(82.4)	0.161
	5-Y	90/121(74.4)	182/227(80.2)	0.222

Conclusions

- Mid-term angiographic follow-up demonstrated acceptable patency rates of grafts after OPCAB.
- The LAD territory showed significantly higher overall patency rates than the LCX and RCA territories in both 1-y & 5-y angiographies.
- Approximately half of the FitzGibbon grade B arterial grafts in the early angiography became grade A at 5-y after surgery.
- The proportion of grade B vein grafts gradually increased over the 5 postoperative years.

Thank You for Your Attention!