The 51th Annual Scientific Meeting of the Korean Society of Circulation Symposium 7

How to Differentiate Patients with LV Hypertrophic Disorders

Toshihiro Takenaka¹⁾, Chuwa Tei^{1, 2)}

 ¹⁾ Division of Cardiac Repair and Regeneration
²⁾ Department of Cardiovascular, Respiratory and Metabolic Medicine Kagoshima University

Introduction

1. To make an accurate diagnosis in patients with clinically unexplained left ventricular hypertrophy (LVH) is often difficult.

- 2. Most of the patients have been diagnosed as having hypertrophic cardiomyopathy.
- 3. Correct diagnosis becomes important, because specific treatment is now available for some of the disorders.
- 4. Fabry disease is one of the disorders for which a specific treatment has been developed.

Fabry Disease

1. In cardiology, Fabry disease including cardiac variant have been classified as one of the specific cardiomyopathies.

- 2. It has been reported that the disease may be more common than previously believed.
- 3. Enzyme replacement therapy (ERT), a specific and effective therapy, is now available for the disease.

4. It becomes very important for cardiologists to differentiate Fabry disease at early stage.

Fabry Disease

- 1. Deficiency of the lysosomal hydrolase α -galactosidase A (α -gal A)
- 2. Defect leads to the systemic accumulation of glycolipids, especially ceramidetrihexoside.
- 3. X-linked, panethnic disorder: frequency of ~1/40,000 males in the USA

 4. Manifestations due to accumulation of glycolipids mainly in vascular endothelial cells Angiokeratoma, Acroparesthesias, Hypohidrosis,

Corneal opacities.

Dysfunction of the kidney brain and heart

Atypical Variant of Fabry Disease (Cardiac Fabry Disease)

 First reported in 1989
Manifestations limited to the heart
Patients have LVH due to deposition of glycolipids in the cardiomyocytes. Overview

Incidence
Clinical Features
ERT and the heart

	20	j.	
Plasma α-Gal A Activity in Male Patients With LVH	Plasma α-gal A activity (nmol/hr/ml) 5 0 0 5		
		Normal	
N Engl J Med 1995; 333: 288-293.		(n=89)	(n=230)

Characteristics of 7 Patients Diagnosed With Fabry Disease

Patient No.		1	2	3	4	5	6
Age (yr)	66	69	62	62	55	70	72
Plasma α-gal A (nmol/hr/ml)	1.2	0.6	1.2	0.6	0.4	0.7	0.6
LV wall thickness IVSth (mm)	20	20	13	13	16	15	15
LVPWth (mm)	20	17	13	12	16	15	14
Hypertension	—	—	-	+	—		
Albuminuria	—	—	—	+	—		
Cerebrovascular damage	—	—	-	+	—	+ -	
Angiokeratoma	—	—	—	—	—		
Acroparesthesias	—	—	—	—	—		
Hypohidrosis	—	—	—	—	—		
Corneal opacities	_	_	_	_	_	— —	

 Seven unrelated patients with atypical variant of Fabry disease, whose manifestations were limited to the heart, were found among 230 men with LVH (3% incidence rate).

2. We designated these cardiac variants as "cardiac Fabry disease."

3. Fabry disease should be considered as a cause of unexplained LVH.

153 consecutive male patients who had been given a diagnosis of HCM at St. George's Hospital in UK Measurement of plasma α -gal A activity Patients given a diagnosis of Fabry disease Assessment of clinical manifestations and echocardiographic findings

Circulation 2002; 105: 1407-1411.

Plasma α-gal A Activity in 153 Male Patients With HCM in UK

Prevalence of Fabry Disease in Kagoshima and in UK

	Kagos	Kagoshima		
Subjects HCM	LVH	HCM		
No. of patients 153	230	93		
Eabry disease	7	6		
6				

Prevalence of Fabry Disease						
in Patients With HCM in Germany						
Subjects; 250 consecutive patients with HCM in Germany						
Methods;	Right ventricular endomyocardial-					
biopsy	biopsy					
	Pathological examination No. of Fabry Prevalence patients disease					
Male	154	17	11.0%			
Female	96	4	4.2%			
Total	250	21	8.4%			
Beer et al., Eur Heart J 2000; 21 suppl: 424						

Prevalence of Fabry Disease in Patients With HCM in Italy						
Subjects; 96 consecutive patients with HCM in Italy						
Methods;	; Endomyocardial-biopsy Pathological examination					
	No. of patients	Fabry disease	Prevalence			
Male	No. of patients 62	Fabry disease 2	Prevalence 3.3%			
Male Female	No. of patients 62 34	Fabry disease 2 4	Prevalence 3.3% 12.0%			
Male Female Total	No. of patients 62 34 96	Fabry disease 2 4 6	Prevalence 3.3% 12.0% 6.3%			

1. Fabry disease may present with a several percent incidence rate in patients with unexplained LVH among different ethnic population.

2. A multicenter study for screening of cardiac Fabry disease among patients with LVH in Korea is now underway.

3. Plasma α-gal A activities should be evaluated for patients with unexplained LVH Overview

Incidence
Clinical Features
ERT and the heart

Subjects: 11 male patients with cardiac Fabry disease Age at diagnosis; 46 – 73 (yr) Mean; 56 (yr) Methods: 1) Echocardiogram 2) Cardiac catheterization 3) ECG. Holter ECG

Cardiac Findings at Diagnosis

No. of patients

Echocardiogram

LVH (≧13 mm) LV dilatation (≧58 mm) LV asynergy

Deteriorated FS (27% \geq) (55%)

11 / 11 (100%) 2 / 11 (19%) 8 / 11 (73%) 6 / 11

9 / 10

Cardiac catheterization Elevated LV EDP (\geq 13 mmHg)

ECG Findings at Diagnosis

	No. of patients
Permanent pace maker	2 / 11 (18%)
Atrioventricular block	4 / 11 (36%)
Intraventricular conduction delay (78%)	7 / 9
LV high voltage (44%)	4 / 9
Abnormal Q wave	4 / 9

Time Course of the Disease 1. Attenuation of LVH Thinning of basal posterior wall 2. Worsening of LV dysfunction Severe diastolic and systolic dysfunction 3. Worsening of conduction delay and/or VPC Attenuation of LV high voltage Onset of heart failure and/or fatal arrhythmia

Mild LVH

Mimicking HCM

Mimicking HCM

Mimicking dilated phase of HCM

Mimicking dilated phase of HCM

Clinical Characteristics of Autopsied

Patient No.	Patie	ents	2	3	4
Age of death (yr)	6	6	68	63	66
Cause of death	Ventricular fibrillation	Heart failure	Heart failure	Heart failure	Heart failure
Plasma α-gal A (nmol/hr/ml)	1.2	1.2	1.3	1.0	0.4
IVSth (mm) LVPWth (mm)	20 20	17 14	16 16	17 16	16 16
Coronary angiogram Albuminuria Serum creatinine (mg/dl)	Normal – 1	Normal – .2	Normal - 0.9	Normal - 0.9	Normal - 1.1
Angiokeratoma	_	—	-	-	_
Acroparesthesia	—	—	-	-	_
Hypohidrosis Corneal opacity	_ _	_	-	-	_ _

Thinning of basal posterior wall

Pathological Findings of the Heart

H.E. staining

Case 2

Case 3

Electron Microscopy

Low magnification High magnification

Significance of Asymmetric Basal Posterior Wall Thinning in Patients with Cardiac Fabry's Disease.

Kawano, Takenaka et al., Am J Cardiol 2007; 99.

To evaluate whether disappearance of basal posterior hypertrophy and elevation of Tei index can be predictors of cardiac death.

Disappearance of basal posterior hypertrophy and elevated Tei index is a characteristic echocardiographic finding which precedes cardiac death in patients with cardiac Fabry disease.

Female carriers (Heterozygote) – 1. Fabry disease is an $\frac{1}{1}$ -linked disorder.

2. Female carriers have 2 X chromosomes, one is normal and the other is mutated.

3. At the cellular level, female carriers have two populations of cells, one with normal and the other with mutant enzymatic activity resulting from the random inactivation of one X chromosome in each cell early in embryogenesis. Female carriers (Heterozygote) – 1.Theoretically, 50% of the cells are normal and the remaining 50% are diseased in female carriers.

2.Female carriers may have attenuated form of the disease. They usually are asymptomatic, although rarely can be as severely affected as males.

Endomyocardial–Biopsy Specimen Male Female (hemizygote, X'Y) (heterozygote, X'X)

Looks like normal

Mimicking HCM

Mimicking dilated phase of HCM

Overview

Incidence
Clinical Features
ERT and the heart

Treatment for Fabry Disease 1. Enzyme Replacement Therapy (ERT) Approved in Europe (2001) Approved in USA (2003) Approved in Japan (2004) Approved in Korea (2004) 2. Gene Therapy Experimental studies using

retroviral, adeno-associated viral,

Improvement of cardiac function during enzyme replacement therapy in patients with Fabry disease: A prospective strain rate imaging study

Weidemann et al., Circulation 2003; 108.

Echocardiographic and MRI Findings Before and After ERT				
16 patients (Age 42±3 yr)				
	Before ERT	After ERT (12 months)		
DcT E/A EF (%) LVPWth (mm) LV mass (g)	242 ± 11 1.3 ± 0.2 62 ± 1 13.8 ± 0.6 201 ± 18	258 ± 12 1.4 ± 0.1 64 ± 1 11.8 ± 0.6 180 ± 21	n.s. n.s. n.s. p<0.05 p<0.05	

LV Radial Function Before and After 6 and 12 Months of ERT

LV Radial Function

Peak Sys. Strain Rate [s⁻¹]

Sys. Strain [%]

Weidemann et al., Circulation 200

Impact of enzyme replacement therapy on cardiac morphology and function and late enhancement in Fabry's cardiomyopathy

Beer et al., Am J Cardiol 2006; 97.

Efficacy of ERT: Changes of LV mass Fibrosis (+) Fibrosis (-)

Beer et al. Am J Cardiol 2006, 97.

First studies have done for patients with preserved global LV function and have shown efficacy of ERT to reduce LVH and improve regional LV function.

Enzyme Replacement Therapy Questions need to be clarified 1. Who should be treated? All hemizygotes and heterozygotes? 2. When should ERT be started? Is ERT effective for patients with deteriorated LV function? 3. How long should ERT be continued? For life-long?

Specific and effective therapy is now available for patients with Fabry disease, so it is very important to diagnose patients with the disease at early stage.

Can cardiologists suspect Fabry disease, especially cardiac variant of the disease, by routine noninvasive cardiac examinations? 1. It is not easy to differentiate Fabry disease from the other unexplained LVH by routine non-invasive examinations such as ECG, echocardiogram and MRI.

 At present, plasma α-galactosidase A activities should be evaluated for patients with unexplained LVH.

3. We wish to find out some specific findings which can lead to suspect Fabry disease by routine examinations.

Cardiac Findings at Diagnosis

- 1. Left ventricular hypertrophy
- 2. LV dysfunction diastolic and/or systolic dysfunction
- 3. ECG abnormalities atrioventricular block, intraventricular conduction delay, LV high voltage, abnormal Q wave, VPC

Looks like normal

Mimicking dilated phase of HCM

Mimicking HCM

Safety and efficacy of recombinant human α -galactosidase A replacement therapy in Fabry's Disease.

Eng, Desnick et al., N Engl J Med 2001; 345.

Fabry's disease cardiomyopathy: Echocardiographic detection of endomyocardial glycosphingolipid compartmentalization

Pieroni et al., J Am Coll Cardiol 2006; 47.

Echocardiographic binary appearance of LV endocardial border, reflecting endomyocardial glycosphingolipids compartmentalization, represents a sensitive and specific diagnostic hallmark of Fabry's

disease cardic hyopathy.

Pieroni et al., J Am Coll Cardiol 2006; 47.