Cardiotoxicity of Cancer Therapy

Byung Won Yoo

Division of Pediatric Cardiology
Cardiovascular Center
Yonsei University College of Medicine

Late Mortality in Childhood Cancer Survivors : The Childhood Cancer Survivor Study

- Retrospective cohort of 20,227 5-year survivors who was diagnosed from 1970 to 1986
- Total mortality : 2030 Pts (10%)

Recurrence of Ca: 1,246 Pts (67.4%)

Treatment-related consequences

: 394 Pts (21.3%)

Absolute excess risk (death per 1,000 person-years);

Secondary cancers: 1.26

Cardiac Cx : 0.27

(Major causes : ACs, RTx)

Pulmonary Cx : 0.015

dary Call 2.70% Cardiac Cxl4.50% Cxl1.50% Infection 0.70%

Cause-Specific Standardized Mortality Ratio

	Subsequent Cancer*		-	Cardiac	Pulmonary		External Causes†		Other Deaths	
	SMR	95% CI	SMR	95% CI	SMR	95% CI	SMR	95% CI	SMR	95% CI
All cases	19.4	17.2-21.8‡	8.2	6.4-10.4‡	9.2	6.5-12.5‡	0.8	0.7-1.0§	3.3	2.8-3.9‡
Sex										
Male	17.1	14.5-20.1‡	8.0	5.9-10.7‡	9.7	6.3-14.2‡	0.8	0.7-1.0	2.5	2.0-3.1‡
Female	22.5	18.9-26.6‡	8.7	5.5-13.0‡	8.5	4.7-13.9‡	0.7	0.4-1.1	5.2	4.0-6.6‡
Diagnosis										
Leukemia	17.4	13.3-22.2‡	3.8	1.5-7.6‡	8.2	4.1-16.3‡	0.6	0.4-0.9§	3.7	2.6-5.2
CNS	18.5	12.8-25.7‡	7.5	3.2-14.4‡	16.5	8.2-32.9‡	1.0	0.6-1.6	4.7	3.0-6.9‡
Hodgkin's disease	24.0	19.2-29.7‡	13.8	9.3-19.4‡	12.0	6.5-22.4‡	0.9	0.5-1.3	2.7	1.8-3.9‡
Non-Hodgkin's lymphoma	15.6	9.6-23.7‡	6.5	2.3-14.0‡	14.7	6.1-35.4‡	1.1	0.6-1.8	2.1	1.0-4.0§
Kidney (Wilms)	22.9	14.1-34.8‡	18.0	7.1-36.4‡	0.0	0.0-12.1	0.7	0.3-1.5	4.5	2.1-8.3
Neuroblastoma	12.6	5.7-23.4‡	8.4	1.4-25.8‡	0.0	0.0-16.0	1.2	0.5-2.4	2.3	0.6-5.9
Soft tissue sarcoma	19.5	13.3-27.3‡	5.7	2.0-12.2‡	7.3	2.4-22.6‡	0.5	0.2-1.0	3.7	2.2-5.8
Bone	18.5	12.6-25.9‡	4.9	1.8-10.5‡	4.7	1.2-18.6§	0.9	0.5-1.5	2.8	1.6-4.5‡

^{*}Subsequent cancers included for survivor population. Cancer deaths resulting from progression of the original cancer are not included in the observed number of events.

†Includes accidents, homicides, and suicides.

 $\dagger P < .01$ for SMR.

 $\S P < .05$ for SMR.

Anthracyclines

- Acute Cardiotoxicity
 - : from several hours to I wk
 - Occur immediately after a single dose or course
 - **Uncommon (severe case <1%)**
 - Transient without longterm sequelae
 - Abnormal ECG, arrhythmia, rarely pericarditis or LV failure
 - Early-onset Chronic Progressive Cardiotoxicity
 - : Within a year receiving ACs
 - Common (incidence 1~16%), life threatening
 - **Decreased LVEF & CHF**
 - Related to cumulative dose
- Late-onset Chronic Progressive Cardiotoxicity
 - : Several years or even decades after ACs (up to 20yrs)
 - Ventricular dysfunction, CHF, arrhythmias
 - More often in childhood/adolescence cancer survivors

Anthracyclines

- Exact mechanism unknown
 - : Formation of iron-dependent oxygen free radicals
 - : Myocardium lower level of Enzymes detoxifying oxygen free radicals compared with other tissues
 - → Irreversible damage to myocardial cell / Apoptosis
- Pathologic changes:
 Loss of myofibril in myocyte
 Vacuolization
 Mitochondrial degeneration
 Interstitial fibrosis

(Berry GJ et al. 2005)

Morphologic Grading of Chronic Anthracycline Cardiotoxicty

Grade	Morphology/clinical recommendations
0	Normal myocytes.
	Isolated or scattered myocytes showing sarcotubular distension or early/partial myofibrillar loss; damage to <5% of all cells in Epon blocks.
1.5	similar to Grade 1.0 but involving 6%–15% of all cells in 10 plastic blocks.
2.0	Clusters of myocytes with myofibrillar loss or sarcotubular distension involving 16%–25% of all cells. →Therapy continued with close hemodynamic/cardiac
	assessment.
2.5	Numerous damaged myocytes (26%–35%) showing characterized changes. → One more dose of anthracycline.
3.0	Diffuse or confluent myocyte damage of >35% of cells. Necrotic cells may be seen. → Therapy is discontinued.

Risk Factors for Anthracycline Cardiotoxicity

- Patient-specific risk factors
 - Age > 65 or pediatrics
 - : Cardiac Cx in ≥60% children with high dose ACs
 - lonizing radiation to chest wall
 - Prior exposure to ACs
 - Preexisting cardiac disease or risk factors
 - Combination therapy: CYPH, MMC, VP16, MELP, VINC, BLEO
 - Marked interindividual variability
- CTx-specific risk factors
 - Dose of drug administered at each session
 - Type of ACs
 - Cumulative dose
 - Schedule of delivery : Continuous infusion vs IV bolus

Cumulative Dose Related Anthracycline Cardiotoxicity

Cumulative Dose	incidence
400 mg/m2	< 5%
500 mg/m2	15%
550 mg/m2	25%
700 mg/m2	50%

	<u> </u>				
Drug	Conversion factor		5% cardiotoxicity dose		
Doxorubicin	1		450 mg/m2		
Daunomycin	0.5		900 mg/m2		
Epirubicin	0.5		935 n	ng/m2	
Idarubicin	2.2		200 n	ng/m2	
Mitoxantrone	2		225 n	ng/m2	

(Lipshultz SE. 2006)

Prevention of Anthracycline Cardiotoxicity

- Primary prevention
 - : Cumulative dose < 550mg/m2 → reduction in Tx efficacy
 - Continuous infusion (48~96h) rather than a bolus dose
- Use of analogues
 - Epirubicin, Idarubicin, Mitoxantrone
 - Lower propensity for cardiotoxic effects
 - Permitting higher dosages and a greater margin of safety
- Alternative approaches to drug delivery
 - : Liposomal preparations- Doxil® (pegylated liposomal Doxo)
- Cardioprotective agents : Dexrazoxane

Prevention: Doxil®

- Liposomal encapsulation → Cardiac sparing effect
 - : extravasate though leaky tumor vasculature
 - localize high concentrations directly at tumor sites
 - **Phase III trial** in first-line treatment of metastatic breast

cancer (MBC)

(O'brien ME et al. 2004)

Figure 1. Progression-free survival [HR = 1.00 (95% CI for HR 0.82–

1.0
0.9
0.8
0.7
0.6
0.9
0.4
0.3
0.2
0.1
0.0
0 5 10 15 20 25 30 35

Months from Randomization

Figure 4. Overall survival [HR = 0.94 (95% CI for HR 0.74-1.19)].

Prevention: Dexrazoxane

Chemoprotectant

- : Prevent free radical formation as an intracelluar chelating agent
- : Free iron & iron bound in ACs complexes
 - → decrease of ACs-induced free radical damage
- : Indication in MBC; > 300mg/m2 of DOXO
 - → decrease the relative risk of cardiomyopathy
- : Pediatrics safety & efficacy not established
- may decrease response rates
- Side effect
 - : myelosuppression
 - significant leukopenia and/or thrombocytopenia in a few cases

(Lipshultz SE. 2006)

Monitoring

- Evidence-based guidelines yet to be established
- Which method is optimal?
 - P/Ex, EKG : Lack of specificity
 - Endomyocardial biopsy : Greatest reliability

Invasive, Not completely safe

- Echocardiography : High reliability & availability
- Radionuclide ventriculography

: High sensitivity for ischemia/ necrosis

Low specificity

- Biomarkers(Troponine I and T, BNP) : Useful for early diagnosis
- ACC/AHA/ASE 2003 Guideline for Clinical Application of Echo
 - : Echo, Nuclear gated blood pool scanning serially during Tx
 - : Doppler-defined diastolic abnormalities
 - precede detectable systolic functional changes

Monitoring

- How frequent monitoring?
- ASCO(American Society of Clinical Oncology)
 Guidelines
 - : Baseline ECG & ECHO
 - : Consider repeating after

If Doxo < 300 mg/m2 : every 2 cycles

≥ 300 mg/m2 : every cycle

≥ 500 mg/m2 : every 50 mg/m2 of doxorubicin.

Discontinuation; If LVEF decreases by 10% from baseline

decreases < 50% normal

<5% increase with exercise

If clinical CHF

: After CTx; at 3~6mo & 1yr, and after then, regular check-up

The 10 Commandment for Optimal Doppler-echo Scan of Oncologic Patients.

- 1. Quantify LV geometry (wall thickness, cavity diameters, relative wall thickness, LV mass).
- 2. Search regional wall motion abnormalities.
- 3. Estimate ejection fraction by 2D apical views if wall motion abnormalities are evident.
- 4. Analyze standard Doppler indexes of LV diastolic function.
- 5. Record pulsed Tissue Doppler of mitral annulus for detection of increasing LV filling pressure.
- 6. Explore structural and functional valve features, in particular mitral and aortic valves.
- 7. Visualize pericardium in all ultrasound views (including subcostal), particularly in patients at high risk (ACs, RTx).
- 8. Search ultrasound "comet tail" in patients at risk (ACs, RTx).
- 9. Scan carotids in patients treated by head and neck irradiation.
- 10. Perform stress echocardiography if coronary artery ds is suspected.

······Treatment

- 1. Conventional Tx : Diuretics, Digoxin, ACE inhibitor, β -blocker : show temporary response or refractory to Tx.
 - : Pharmacologic intervention do not reverse CHF!!
- ACE inhibitors:Despite initial improvement, no long term benefit
 - : Enalapril
 - In ASx LV dysfx, returned to pre-Tx levels of LV fx after 10 yrs
 - In HF, all Pts needed transplantation or died after 3-5yrs
- β-blockers: could delay the need for transplantation
 - : Carvedilol
 - In case-control study, LVEF increased from 28% to 41%
 - In randomized trial,
 LVEF declined 17% in placebo & 1% in carvedilol group.
- Growth hormone: arresting progression of AC-induced CM
- 2. Heart Transplantation: only successful Tx option
- 3. Guideline for asymptomatic LV dysfunction/HF
 ACC/AHA/International Society for Heart & Lung Transplantation
 :Benefit of Tx in preventing ds progression in asymptomatic Pts.

Radiation Induced Heart Disease (RIHD)

- Chest irradiation: 10-fold increased risk of cardiac deaths
- Incidence :
 - Cardiac exposure : Subcarinal block 2.5%

Partial cardiac shielding 7.5%

Whole pericardial irradiation 20%

Asymptomatic in many cases

: at more than 5yrs after RTx - 40% pericardial damage in echo

- 5~10% clinically severe Ds

- Onset of Sx: from days to more than 15yrs
- Risk factor: Total dosage (>35 Gy)

Volume of cardiac exposure

Dose fractionation (>2.0 Gy/d)

Concomitant CTx (esp. ACs)

Preexisting CAD

Young age

Spectrum of RIHD

1. Pericaridal disease - Most Common

- a. Acute fibrinous pericarditis during RTx
- b. Acute fibrinous pericarditis with delayed onset
- c. Constrictive pericarditis

2. Endocardial & myocardial disease

- a. Pancarditis
- b. Cardiomyopathy (Dilated, Hypertrophic, Restrictive CM)
- c. Endocardial fibrosis

3. Valvular disease

Fibrosis with/without calcifications

4. Conduction disturbances

Infranodal or atrioventricular nodal block

5. Coronary artery

Arteriosclerosis/accelerated atherosclerosis

RIHD

1. Pericardial Disease

- Acute fibrinous pericarditis
 - : Early onset (during RTx) likely caused by tumor lysis
 - : Delayed onset or chronic spont. Resolution up to 2yrs
 - → 20% progress to constrictive pericarditis
- Constrictive pericarditis
 - : can develop mos, yrs or decades after RTx
- Tx: Anti-inflammatory drugs, Pericardiocentesis, Pericardiectomy
- 2. Endocardial & myocardial disease
 - : Dose related (>3000rad)
 - : less common, more serious than pericardial ds.
 - : Mechanism
 - microvascular damage(esp. endothelial cell) with interstitial fibrous remodeling and myocardial ischemia.
 - endocardial & myocardial fibrosis → resultant restrictive CM
- 3. Valvular disease
 - : Lt-sided valves more commonly affected and show regurgitant changes

Pericardial disease of RIHD | Cardiomyopathic type of RIHD

(Berry GJ et al. 2005)

Cardiotoxicity of Chemotherapeutic Agents

Drug	Toxicity	Incidence	Other information
Anthracyclines			
Doxorubicin Daunorubicin	CHF Cardiomyopathy	+++	
Alkylating agents			
Busulfan	Endocardial fibrosis Cardiac tamponade	+	4-9yrs after Tx Cumulative dose>600mg
Cisplatin	Ischemia, MI CHF Hypertension	++ ++ ++++	Very late onset: 10~20yrs after Tx CHF risk increase: elderly, after chest XRT, after prior ACs
Cyclophosphamide	Pericarditis Myocarditis CHF EKG changes	+ ++ +++	Incidence: 2~10% Acute cardiotocixity (last up to 6d) Hemorrhagic myocarditis; rare RF: Total dose of individual course (>1.55g/m²/d: 25%), elderly, after chest XRT, prior ACs Prevention: Fractionaing the dose into at least 2~3doses over 2~3days
Ifosfamide	CHF Arrhythmias	++++	RF: prior ACs, high cumulative dose (10~18g/m²:17%), increased Cr level
Mitomycin	CHF	++	RF: high cumulative dose, prior ACs, after chest XRT

Antimetabolites			
Capecitabine	Ischemia	+	More common with CAD. by vasospasm or thrombosis
Cytarabine	Pericarditis CHF	+	Rare cases of cardiomyopathy /c cyclophosphamide
Fluorouracil	Ischemia (angina, MI) Cardiogenic shock ECG change	++	Reversible on cessation of 5-FU RF: CAD(risk x4), chest XRT, concomitant cisplatin
Antimicrotubules	5		
Paclitaxel	Arrhythmia Hypotension CHF	++++	ASx.brady(76%), Heart block, PVC, VT Often seen with hypersensitivity possible if given with doxorubicin
Vinca alkaloids	Ischemia	++	RF:CAD, female, chest XRT
Monoclonal antib	podies		
Trastuzumab	CHF/LV dysfunction	++	Her2: critical role in embryonic cardiogenesis & cardiac hypertrophy Risk: monoTx -3~5% /c ACs & cyclophosphamide -27% Reversibility: 80% Pts respond to Tx
Alemtuzumab	Hypotension CHF	+++	In infusion reactions. rarely seen with mycosis fungoides.
Bevacizumab	Hypertension CHF	+++ ++	Severe HTN (200/110mmHg): 7% CHF: 14% with ACs

Miscellaneous				
IL-2	Hypotension Arrhythmias Thrombosis	++++ ++ +	Capillary leak sd (severe hypotension:3%) Prevent: premedication /c steroid	
Interferon-a	Hypotension Ischemia	+++	RF: preexisting cardiac dysfunction, prior cardiotoxic therapy	
Asparaginase	MI Lipid abnormalities	+	Various effect on lipid profile: Decreases or increases in cholesterol and TGs	
ATRA	CHF Hypotension Pericardial effusion	++ ++ +	In retinoic acid syndrome(26%, within 3wks): respiratory distress, fever, pulmonary edema, decrease LVEF(17%)	
Arsenic trioxide	QT prolongation Torsade de pointes	++	Important to maintain normal electrolytes and to discontinue QT-prolonging drugs.	
Imatinib	Pericardial effusion CHF Peripheral edema	++	Severe fluid retention can rarely be fatal. Dose related, occurring in 50–70% of patients receiving 300mg/d.	
Thalidomide	Peripheral edema DVT Bradycardia	++ ++ ++	Known severe congenital defects in fetuses. In multiple myeloma: routinely given low-dose warfarin for DVT prophylaxis.	
Etoposide	Hypotension Ischemia	++	Coronary spasm by vasoactive substances RF: rapid infusion, c other CTx agents (many Pts /s cardiac RFs)	

Cardiotoxic Syndromes Associated with Chemotherapeutic Agents

Cardiotoxic syndromes	Drugs
Myocardial depression	Anthracyclines Cyclophosphamide(Cytoxan) Trastuzumab(Hercentin) ATRA, Ifosfamide
Ischemia	5-FU Cisplatin, Capecitabine, Vinca alkaloids
Hypotension	Paclitaxel(Taxol) Etoposide, Rituximab(Rituxan), IL-2, IFN-α
Hypertension	Cisplatin, Bevacizumab
Bradyarrhythmias	Paclitaxel(Taxol), Thalidomide
Endocardial fibrosis	Busulfan
DVT	Thalidomide
Pericarcial or Pl. effusions	Imatinib(Glivec), Thalidomide

Time Course of Cardiotoxicity of Cancer Therapy

Acute (Anthracyclines, Cyclophosphamide, 5-FU, RTx)

Very Late (RTx, Anthracyclines, Cisplatin)
48mo

The Duration of Cardiologic Monitoring of Patients Undergoing Cancer Therapy Needs to be Very Long and Accurate!!