Congenital Heart Disease – Genetic Aspects –

Hyang-Ok, Woo

Department of Pediatrics Gyeongsang National University College of Medicine Jinju, Korea

GYEONGSANG NATIONAL UNIVERSITY COLLEGE OF MEDICINE

Congenital Heart Disease (CHD)

- A complex mixture of environmental and genetic factors
- Due to the multifactoral nature of the disease, the etiologies of CHD are largely unknown.
- A heterogenous group, caused in some cases by single-gene or chromosomal mechanism and in others by exposure to teratogens

Congenital Heart Disease (CHD)

- A frequency of about four to eight cases/1,000 births (one in every 100 infants each year)
- Often occur in the setting of multiple congenital anomalies :
 - ✓ abnormal facial features
 - ✓ limb anomalies
 - ✓ other organ malformations
 - ✓ developmental abnormalities
 - ✓ growth abnormalities

Genetic Basis of CHD

- Advanced cytogenetic techniques => detect subtle
 rearrangements in chromosomes
- Molecular instruments such as linkage analysis and positional cloning => identify genes causing
 Mendelian monogenic syndromes with CHDs

Genetic Basis of CHD

- CHD are going to live to adulthood and may have the opportunity to reproduce.
- For the clinician caring for a child with CHD, it is very important to determine whether there is an underlying genetic pattern (eg, deletions, duplications, or mutations)

Current genetic techniques for evaluation of CHDs

- A number of genetic tests that can assist the clinician in diagnosing genetic alterations in the child with CHD
 - Cytogenetic techniques
 - ✓ Fluorescence in situ hybridization (FISH)
 - ✓ DNA mutation analysis

- Standard chromosome analysis : revealed chromosomal aberration in 8% to 13% of neonates with CHD
- CHD: At least 30% of all children with chromosomal abnormalities (nearly 100%, as in trisomy 18)
- An important part in children with various types of CHD of medical evaluation

- Standard metaphase karyotype (450 to 550 bands), especially those of chromosome number (7 to 14 days)
- High-resolution banding, in prometaphase (550 to 850 bans) : more sensitive test (up to 3 weeks)

=> better defines chromosomal structural abnormalities (duplications, translocations, and interstitial or terminal deletions)

- The standard karyotype, G-banding : the staining technique most commonly used in the clinical cytogenetics laboratory, metaphases
 - => GTG-banding (G-banding with trypsin and Giemsa)
- Specimens : P.P. blood lymphocytes, cord blood, skin fibroblasts, amniotic fluid, chorionic villi, and bone marrow

- A light microscope and the images acquired by a digital camera for computer analysis
- Using specialized software, investigators pair the chromosomes according to size, centromere position, and banding pattern, to produce a karyotype.

FISH technology

- Molecular cytogenetic technique : uses fluorescently labeled DNA sequences (gene, locus, loci) in metaphase chromosomes
- A specific location in the genome ~ determine the presence or absence of these sequences
- Detect microdeletions : too small (*ie*, < 3 to 4 Mb) to be seen by GTG-banding.(esp, normal karyotypes by GTG-banding.)

FISH Analysis

- Chromosomes are stained blue with a dye such as DAPI (4',6– diamidino–2– phenylindole dihydrochloride hydrate) for visualization.
- Fluorescent label : fluoroscein isothiocyanate (green) or rhodamine (red)

UNIVERSITY COLLEGE OF MEDICINE

Telomere analysis by subtelomere FISH

- Tiny deletions, duplications, or subtle translocations involving the most distal ends of each chromosome (telomeres) : quite difficult to detect by standard or high-resolution karyotype techniques.
- Newly developed fluorescent DNA probes for many interstitial chromosomal regions now provide the ability to detect abnormalities that involve the subtelomere-telomere regions (subtelomere FISH).

DNA Mutation Analysis

- Mutation analysis : identifies changes in the coding sequence of the gene, including small deletions, insertions, or substitutions of nucleotides (that alter the encoded amino acid and consequently protein structure)
- Most methods : PCR (polymerase chain reaction) based assays

DNA Mutation Analysis

- Indirect screening methods :
 - HPLC (high-performance liquid chromatography)
 - Single-strand conformation polymorphism
- Exon-by-exon sequencing of genomic DNA: More expensive
- Direct sequence analysis methods : newer, more cost-effective methods
- Specimens : P.P. blood lymphocytes, other tissues (skin, liver, muscle, buccal cells, or saliva)

Loci and genes associated with CHDs identified to date

Deletion syndromes identified by FISH

technology

✓ DiGeorge syndrome

✓ Williams-Beuren syndrome

DiGeorge syndrome

- There are many different organs affected by DiGeorge.
- Known as Velocardiofacial syndrome
- The CHD involve derivatives of the neural crest or second heart field (SHF), including <u>interruption of the</u> <u>aortic arch (IAA), persistent truncus arteriosus (PTA),</u> TOF, DORV and TGA.

DiGeorge syndrome

- On FISH, ≈90% of patients with the DiGeorge phenotype have a microdeletion of part of 1 copy of chromosome 22.
- Prevalence : 1 per 5,950 live births
- A chromosomal deletion of 22q11 : the most common human chromosomal deletion syndrome
- Metaphase with 22q11 microdeletion

DiGeorge syndrome

- Chromosomes 22 : the *green signals* (from an internal control probe for the ends of chromosome 22)
- The *red signals*: for sequences for gene *TUPLE1* and adjacent loci within the 22q11 region.

DiGeorge syndrome and TBX1

- Evidence in mice suggests that disruption of one of the two copies of the T-box gene, *TBX1*, causes the cardiac and pharyngeal arch anomalies observed in 22q11 deletion syndrome.
- This provided strong evidence that *TBX1* was the gene responsible for CHD in DiGeorge syndrome.
- *TBX1* mutations were subsequently found in DiGeorge patients that lacked the 22q11 chromosomal deletion.

Williams-Beuren syndrome

- Williams syndrome : an autosomal dominant disorder
- specific cardiovascular defects (supravalvular aortic stenosis, p.p. pulmonary stenosis..), infantile
 hypercalcemia, skeletal and renal anomalies, cognitive deficits,
 "social personality," and elfin facies.
- Most cases arise de novo due to a chromosomal microdeletion.

Williams-Beuren syndrome

 Approximately 90% of individuals with a clinical diagnosis of Williams syndrome : by FISH to have a microdeletion at chromosome 7q11.23

Loci and genes associated with CHDs identified to date

Single-gene disorders

✓ Alagille syndrome

✓ Noonan syndrome (NS)

✓ Holt-Oram syndrome (HOS)

✓ Nonsyndromic single-gene disorders

Alagille syndrome

- A complex disease : characterized by liver disease (chronic cholestasis; reduced bile flow), <u>pulmonic</u> <u>artery stenosis (PS), and occasionally TOF & CoA</u>
- A subset of Alagille patients (3% to 7%): deletions of chromosome 20p12 detectable by karyotype or FISH analysis

Alagille syndrome

- The gene JAG1, which encodes a Notch ligand protein product, has been mapped into the commonly deleted region of 20p12.
- Mutations of *JAG1*: identified in patients with a broad spectrum of clinical phenotypes (including patients with a predominant cardiac phenotype)

Alagille syndrome and the Notch pathway

- Mutations in JAGGED1 (JAG1) : a transmembrane ligand for the Notch family of receptors, are found in most cases of Alagille syndrome.
- The most recent gene linked to isolated CHD also belongs to the Notch signal transduction pathway.

Noonan syndrome (NS)

- A genetic multiple malformation disorder : short stature, typical facial dysmorphism, webbed neck, chest deformity, and cardiovascular abnormalities
- Cardiac involvement : in 80% to 90% of affected individuals
- The most common of CHD : valvar pulmonic stenosis and hypertrophic cardiomyopathy

Noonan syndrome (NS)

- Genetically heterogeneous : there are at least 3 NS disease genes, *PTPN11*, *SOS1*, and *KRAS.92*.
- With genetic linkage analysis and then positional candidacy, an NS disease gene on chromosome 12 was identified.
- It is *PTPN11*, which encodes a protein tyrosine phosphatase called SHP-2.

Noonan syndrome (NS)

- SHP-2: an important role in signal transduction for a wide variety of biological processes, including the <u>formation of the semilunar valves</u>.
- Mutations in the *PTPN11* gene : in 40% to 50% of NS patients (more prevalent among familial cases and among NS patients with <u>pulmonary valve stenosis</u>)

The Noonan syndrome family (Cardio-Facio-Cutaneous, Costello, and Noonan)

- Three syndromes with many overlapping clinical symptoms have revealed a signal transduction pathway controlling formation of the pulmonary valve.
- Two other syndromes, Cardio-Facio-Cutaneous syndrome (CFCS) and Costello syndrome, have similar clinical features but no mutations in *PTPN11* could be linked to them.

Holt-Oram syndrome (HOS)

• An autosomal dominant

"heart-hand" syndrome :

characterized by CHDs in patients with upper-limb deformities

- Occurs in approximately 1 per 100,000 individuals
- Arm and hand abnormalities : about 100% (Defects in the bones of the hand and/or arm)
- Heart abnormalities : About 75% (a heart defect such as an <u>atrial septal defect</u> or <u>ventricular septal defect</u>, <u>abnormal heart rhythms</u> may also be present.)

Holt-Oram syndrome (HOS)

- Mutations in the *TBX5* transcription factor gene (chromosome 12q24.1)
- *TBX5* transcription factor : a key regulator, particularly in combination with other transcription factors such as *NKX2.5* and *GATA-4*, of gene expression during embryogenesis
- Loss of its activity markedly impairs development of the heart and limb.

TFAP2β and Char syndrome

- Char syndrome, another heart-hand syndrome like Holt-Oram syndrome, is characterized by <u>PDA.</u>
- TFAP2 β was mapped to the previously described
 Char syndrome locus, and dominant negative proteins that impaired DNA binding of TFAP2 β appear to cause many of the defects observed in Char syndrome. (chromosome 6p12-p21)

TFAP2β and Char syndrome

 Direct sequence analysis of amplified DNA containing the TFAP2 β exon 5 and flanking intronic boundaries revealed heterozygous changes in the ARK (C-> A transversion) and SCOT families(C-> T transition).

Genetic etiologies of syndromic CCVM

Gene	Syndrome	Cardiac malformation
Fibrillin1/2	Marfan	Aortic aneurysm
TGFBR2	Marfan	Aortic aneurysm
NF1	Neurofibromatosis	<u>PS</u>
NF1	Neurofibromatosis-Noonan syndrome	<u>PS</u>
Elastin	William	SVAS
TBX5	Holt-Oram	ASD, VSD, conduction
JAG1	Alagille	PS, TOF
NOTCH2	Alagille	PS, TOF
ZIC3	Heterotaxy syndrome	d-TGA with heterotaxy
CFC1	Heterotaxy syndrome	d-TGA with heterotaxy
EVC/EVC2	Ellis-van Creveld	ASD
ΤFAP2β	Char	<u>PDA</u>
TBX1	DiGeorge/22q11.2 deletion syndrome	<u>VSD, PTA, IAA, TOF</u>
VEGF promoter	DiGeorge modifier	<u>VSD, PTA, IAA, TOF</u>
(-2578A/-1154A		
/—634G)		
PTPN11/Shp2	Noonan	<u>PS</u>
MEK1 and MEK2	Cardio-Facio-Cutaneous	<u>PS</u>
B-Raf	Cardio-Facio-Cutaneous	<u>PS</u>
H-Ras	Costello	PDA, PS
K-Ras	Cardio-Facio-Cutaneous	<u>PS</u>
K-Ras	Noonan	<u>PS</u>
CHD7	CHARGE association	ASD, VSD, mitral valve defects
Sema3E	CHARGE association	ASD, VSD, mitral values are featened

Nonsyndromic single-gene disorders

- Studies have recently shown that nonsyndromic CHD can result from single-gene defects.
- The mutations were found only in affected individuals, were not present in control samples, and were demonstrated to change protein structure or function.

Nonsyndromic single-gene disorders

 These studies identify critical molecular pathways involved in cardiovascular development and disease, given that the proteins encoded by *NKX2.5*, *GATA4*, and *TBX5* are known to interact with one another in experimental systems.

Nonsyndromic single-gene disorders

- Many cases of nonsyndromic CHD : unlikely to result from simple single-gene disorders
- Instead, many cases of CHD are likely the result of multiple genetic alterations that increase susceptibility to CHD and interact with environmental factors.

Genetic etiologies of nonsyndromic CHD

GENE	Inheritance	Cardiac malformation
NKX2.5	Autosomal dominant	ASD, conduction
JAG1	Partial penetrance	TOF
GATA4	Autosomal dominant	VSD, ASD
PROSIT240	Chromosomal	<u>d-TGA</u>
	translocation	
MYH6	Autosomal dominant,	ASD
	partial penetrance	
VEGF promoter	Modifier gene	TOF
(-2578A/-1154A/		
-634G)		
NOTCH1	Autosomal dominant	BAV, calcification
GYEONGSANG NATIONAL UNIVERSITY COLLEGE OF MEDICINE		

Genetic etiologies of isolated CHD (CCVM)

- Outflow tract defects and NOTCH1
- Septal defects
 - ✓NKX2.5
 - ✓ GATA4
 - \checkmark Myosin heavy chain 6

Outflow tract defects and NOTCH1

- A family with a history of OFT defects : predominately
 BAV and /or early-onset aortic valve calcification
- Linked to chromosome 9q34–35
- Premature stop codons in the NOTCH1 gene : found to segregate with the CCVM in this family & a second unrelated family with a similar phenotype

Septal defects : NKX2.5

- Linkage of four families with histories of ASD & atrioventricular conduction block to mutation in NKX2.5 => the first example of single gene mutations causing non-syndromic CCVM
 - => The conduction defect may be due to progressive loss of specialized conduction cells at the atrioventricular node.
 - => Familial ASD populations may benefit from periodic electrophysiologic monitoring

Septal defects : GATA4

- Another cause of septal defects (ASD, VSD, and AVSD) without conduction abnormalities : identified in two families that had mutations in the GATA4 transcription factor
 - A frameshift mutation with a premature stop codon : in non-sense mediated decay of the mRNA
 - b. A missense point mutation, Gly295Ser
- Potential protein-protein interactions based on the common phenotype observed in human with GATA4, TBX5 or NKX2.5 mutations

Septal defects : MyHC6

- A mutation in myosin heavy chain 6 (MyHC6) can also cause ASDs.
- MyHC6 : a known target of all three-transcription factors
- Only a single kindred has been identified with MyHC6 distruption (binding to its myosin light chain counterpart)

Genetic risk factors for sporadic CHD

- Most cases of CCVM : sporadic, no immadiate family history => multifactorial with no single gene being totally responsible
- In part to mutation in NOTCH1, JAGGED1, GATA4, MHC6, or TBX5 (less than 5% of CCVM)
 - ✓ VEGF promoter
 - A cautionary note : methylenetetrahydrofolate reductase (MTHFR)

VEGF promoter

- Deletion of the 164 amino acid VEGF isoform from mice : revealed defects that mimicked most of the DiGeorge syndrome phenotype, including TOF.
- In the same study, a haplotype of three SNPs in the VEGF promoter and 5'-UTR was tentatively linked as a modifier of DiGeorge syndrome CCVM in a small cohort of patients.

VEGF promoter

 More recent work, using transmission disequilibrium testing of the VEGF promoter haplotype found a 1.8– fold increased risk for sporadic TOF in a single cohort of approximately 250 Caucasian patients, but this has yet to be confirmed by other groups.

A cautionary note: MTHFR

- 5,10-Methylenetetrahydrofolate reductase (MTHFR) is one of the enzymes necessary for metabolizing homocysteine into methionine.
- A common variant of MTHFR, 677C > T : present in 10-20% of Caucasians in a homozygous state and is a risk factor for defects of the neural tube.
- At the prevalence of homozygous 677C>7 in sporadic cases of CCVM

- Chromosome analysis and FISH testing for specific deletions : now accepted tools for the clinician
- If the clinician finds a specific chromosome abnormality
 - => provide the family with a clear explanation of the cause
 - => allow the clinician to provide appropriate counseling about recurrence or lack of recurrence
 - => prompt the physician to investigate other potential medical problems known to be associated with the particular chromosomal anomaly

- Specific assessment for physical features : should focus on
 - ✓ dysmorphic facies
 - ✓ eye and ear abnormalities
 - ✓ limb reduction defects
 - ✓ polydactyly
 - ✓ other skeletal defects
 - ✓ gastrointestinal and urologic defects
 - ✓<u>neurological status</u>

Genetic testing :

- ✓ determine a genetic mechanism of disease
- provides an important opportunity for genetic counseling (benefits the entire family)
- Cytogenetic testing should be considered in the following situations:
- Any infant or child with the phenotype of a recognizable chromosomal syndrome (eg, trisomy 21 or 18)

- Any infant or child with a congenital heart defect combined with
 - (a) dysmorphic features
 - (b) growth retardation that cannot be explained by the heart defect
 - (c) developmental delay or mental retardation
 - (d) multiple congenital anomalies

3. Infants or children with a family history of multiple

miscarriages and/or siblings with birth defects

4. If major cardiac and/or other visceral organ

malformations are documented by prenatal ultrasound

and/or fetal echocardiogram

Future directions

- Become increasingly accepted that genetic variations and mutations play a major role in the development of CHD
- Implicated in syndromic and familial non-syndromic
 CHD (mutated in cases of sporadic CHD)
 - ✓ Candidate gene screen
 - ✓ Haplotype mapping of CCVM

Candidate gene screen

- Over 150 genes : implicated in the cardiogenesis of model organisms (so far, and the number continues to grow)
- A clear bias for genes that act as nodal points: Transcription factors (NKX2.5 and GATA4), Signal transduction pathways (VEGF and NOTCH1), Translational regulators (such as the newly discovered microRNAs)

Haplotype mapping of CCVM

- The full list of heart development genes is unknown.
- The HapMap project has identified 10,000,000 single nucleotide polymorphisms (SNPs)
 - => occur in at least 5% of the general population
- The HapMap project identified a core group of 500,000 common SNPs.
- Using this core list, one could investigate cohorts of CCVM patients and controls to determine which haplotypes occur more often in the disease state.

Haplotype mapping of CCVM

 The incorporation of gene copy number (a potential genetic risk factor) : important

=> It is becoming clear that relatively small genetic duplications or deletions may segregate with disease.

 A combination of copy number evaluation with resequencing and genome-wide SNP associations : ultimately begin to reveal the genetic basis for common forms of CHD.

Future directions

- Patients with CHD require multidisciplinary care.
- Their families deserve up-to-date genetic information
 - ✓ as it relates to their child's prognosis
 - ✓ to the kindred's risk for future inheritance of genetic abnormalities associated with cardiac defects.

