Hemodynamics and systolic and diastolic function in single ventricle

Department of Pediatrics, College of Medicine, Pusan National University, Busan, Korea Hyoung Doo Lee, M.D.

Single ventricle or univentricular heart

 Hearts for which division into two separate ventricles is deemed surgically infeasible

Clinical presentations of single ventricle patients

Clinical presentation	Anatomic example
 Inadequate pulmonary circulation (or ductal-dependent) Excessive pulmonary circulation without 	 -{S,D,S} Tricuspid atresia with pulmonary stenosis (IB) -Single right or left ventricle with pulmonary atresia -{S,D,D} Tricuspid atresia, with transposition of the
 Systemic outflow obstruction Excessive pulmonary circulation with systemic outflow obstruction 	great arteries and unrestricted pulmonary blood flow (IIC) -Hypoplastic left heart syndrome (MS/AS; MA/AS; MS/AA; MA/AA) (C.D.D.) (C.D.D.)
4. Balanced pulmonary blood flow	 -{S,D,D} tricuspid attesta with restrictive VSD -{S,L,L}Double outlet left ventricle with restrictive VSD -{S,D,S} Tricuspid atresia with pulmonary stenosis (IB) -{S,D,D}DORV uncommitted VSD with pulmonary stenosis

Goals of early managements

- Relief of outflow obstruction
- Optimized Qp/Qs
- Unimpeded pulmonary venous return
- Provision of adequate intracardiac mixing
- Arch reconstruction, aortopulmonary anastomosis, correction of APVR, atrial septectomy, aortopulmonary shunt, PA banding

Circuits in parallel and in series

Arterial saturation and Qp/Qs in single ventricle

Aortic saturations as plotted against Qp/Qs Cardiol Young 2003;13:316-22

Arterial saturation and Qp/Qs in single ventricle

- SaO₂ depends on Qp/Qs
- To achieve SaO₂ 90%, Qp/Qs at least > 3:1
- Qp \uparrow to very high level \rightarrow little gain in SaO₂
- At Qp/Qs 1:1~2:1, Qp $\uparrow \rightarrow$ significant SaO₂ \uparrow

Arterial saturation and Qp/Qs in single ventricle

- SaO₂ depends on Qp
- Qp related to Rs

To increase Rp	To decrease Rp
Acidosis	Alkalosis
Inc PEEP	Nitric oxide
Vasopressor agents	Low MAP
Noradrenaline, adrenaline	High FiO ₂
High PaCO ₂ , hypoxia,	Phosphodiesterase
added nitrogen	inhibitors, nitrates

Potential natural history of HLHS

- Ideal anatomy and physiology Qp/Qs around 1; mild RV volume overload; SaO₂ around 80%; normal Qs
- Falling Rp Qp/Qs [↑]; sign of failure; SaO₂ around 85%
- Low Rp Qp ↑↑; obvious heart failure with poor peripheral perfusion, metabolic acidosis but high SaO₂
- Closing arterial duct very low Qs; shock with renal failure; high SaO₂

Systolic functions in palliated univentricular heart

- Result of palliation volume overload
- SaO₂ > 85% ← Qp/Qs > 1.5:1 ← total ventricular output 2-3 times normal ← end-diastolic volume 200-300% normal
- Chronic volume overload progressive ventricular dilation, more spherical ventricular shape

- Persistent cyanosis with mean SaO₂ 75%
- For adequate systemic O₂ delivery, CO^{↑↑}
- End-diastolic volume but still 125-200%
 normal
- Volume-load reduction, but not normalization

- Age-related phenomenon
- SCPA at < 3 yrs ventricular volume \downarrow
- SCPA at > 10 yrs no change JACC 1996;28:1301-7
- Morpholgic single LV vs RV
 Prior aortopulmonary shunt vs PA band

- Nearly total separation of systemic and pulmonary circulation
- SaO₂ 90-95% or less, \downarrow during exercise
- Prior to SCPA or Fontan, Rs 20% below normal vasorelaxation due to arterial desaturation and parallel relationship of two circulation

- Acute rise in Rs
- Moving the pulmonary circulation into series cross sectional area ↓, total vascular length ↑ Rs ↑
- Peripheral vasoconstriction and neurohumoral activation
- Net impact, 75% increase in Rs

- After Fontan, dramatic fall in preload (35-50%, previous SCPA 15%)
- Afterload ↑ and preload ↓ ⇒ systolic function ↓
- Under the optimal circumstances, subsequent ventricular remodeling and somatic growth lead to normalization of ventricular size

 Ventricular remodeling with improved ventricular contractility in Fontan < 10 yrs of age, no such recovery in Fontan at a later age

Circulation 1992;86:1753-61

- Other factors related to late outcome
- Prolonged elevation of coronary sinus pressure
- Valve regurgitation
- Durability of systemic right ventricle

Diastolic function in palliated univentricular heart

- In tricuspis atresia
- Significant ventricular dilation, reduced mass/volume ratio, normal chamber stiffness

Am J Cardiol 1994;73:292-7

Diastolic function after SCPA or Fontan

- Preload ↓ end-diastolic volume ↓ mass:volume ratio ↑
- Ventricular compliance ?
- Prolonged isovolumetric relaxation time
- Reduced early rapid filling

Ventricular compliance

- Chronic volume overload rightward shift of diastolic pressure-volume relationship
- Increased chamber distensibility due to ventricular remodeling
- Chamber compliance is not impaired by acute fall in preload

Diastolic Pressure-Volume Curve

Impact of ventricular hypertrophy

- Circulation 1987;76(Suppl):III45-52
 Reduced mass:volume ratio asso with reduced survival after TCPA
- J Thorac Cardiovasc Surg 1986;92:1049-64
 Hypertrophy longterm risk factor for death after Fontan
- Herz 1992;17:220-7

Lower volume and higher mass:volume ratio in group with poor outcome

Median Age at "Hemi-Fontan" (Boston Children's Hospital)

Median Age at Fontan Operation

(Boston Children's Hospital)

Ventricular relaxation

- Prolongation of isovolumetric relaxation time and lower E:A ratio after Fontan indicating impaired relaxation
- Incoordinate relaxation, inter- and intraventricular conduction defect, elevated coronary sinus pressure

Summary

- Palliated single ventricle is at risk for chronic volume overload induced myocardial injury, the severity of which is related to the duration and magnitude of volume overload.
- SCPA and Fontan procedures reduce the volume load on the ventricle, and performed early serve to protect the myocardium from irreversible injury.