Baseline disease oriented management of heart failure Prevention & Management of Hypertensive Heart Failure

Hallym University Hospital Dept. of Cardiology

Kyu-Hyung Ryu, MD, FACC

Hypertension in Hospital Based Epidemiologic Study Underlying cause of CHF in Korea (multicenter survey)

Korean J Circ 2003

Hypertension, leading cause of heart failure

Etiology of CHF (Framingham Study) McKee ET et al. N Engl J Med *1971*

Hypertension, still leading cause of heart failure

Effect of hypertension on the risk of heart failure (Framingham Study) Levy D et al. *JAMA 1996*

ACC/AHA Guideline For Treatment of Heart Failure Staged Approach

Stage	Description	Examples
А	High risk of developing HF No structural or functional abnormality	Hypertension, CAD, DM, cardiotoxic drug, Alcohol abuse, Hx of rheumatic fever, FHx CMP
В	Structural heart disease strongly associated with developing HF Never symptoms or signs	LV hypertrophy or fibrosis, LV dilation or hypocontractility, Asymptomatic VHD Previous MI
С	Current or past history of HF with underlying structural disease	Symptom due to LV systolic dysfunction Aysmptomatic patients but treated due to previous symptom
D	Advanced structural heart disease with far advanced structural disease Marked symptom despite maximal medical therapy	Frequent hospitalization, home continuous IV support, waiting transplantation, mechanical device assist

ACC/AHA Guideline For Treatment of Heart Failure Staged Approach for patients with *hypertension*

Stage	Description	Management
A	Untreated or inappropriately treated hypertnsion	Control of blood pressure Modification of risk factors of atherosclerotic vascular disease
В	Concentric or eccentric LVH without Sx Asymptomatic LV dysfunction	Regression of LVH Preventing progression to symptomatic HF
C	Symptomatic LV systolic dysfunction HF with preserved systolic function	Relieve symptom of heart failure & improve survival
D	End stage heart failure	Relieve Sx and improve quality of life

Prevention of Heart Failure in Patients with Hypertension (Stage A)

Stage	Description	Examples
A	Untreated or inappropriately treated hypertension	Control of blood pressure Modification of risk factors of atherosclerotic vascular disease
В	Concentric or eccentric LVH without Sx Asymptomatic LV dysfunction	Regression of LVH Preventing progression to symptomatic HF
С	Symptomatic LV systolic dysfunction HF with preserved systolic function	Relieve symptom of heart failure & improve survival
D	End stage heart failure	Relieve Sx and improve quality of life

Large Randomized Controlled Trials Comparing Different Antihypertensive Agents for Preventing Heart Failure

		Event rate				
Study	Medication (initial dose, mg/d)	Heart Failure	MI	Stroke	Major CV event	CV mortality
STOP-2	Beta blocker	16.4/1000py	14.1	22.2	44.1	19.8
	ACEi	13.9 [†]	12.2 †	20.2	41.9	20.5
	CCB*	17.5	16.7	19.5	43.6	19.2
INSIGHT	Nifedipine GITS(30)	0.9%¶	2.4%	2.0%	6.3%	1.9%
	HCTZ(25)	0.3%	2.0%	2.3%	5.8%	1.2%
NORDIL	Diltiazem	2.5/1000py	7.4	6.4	20.2	5.2
	Thiazide/β blocker	2.1	6.3	7.9 [§]	19.2	4.5
CAPP	Captopril(50) Atenolol or metoprolol(50-100) +HCTZ diuretics	1.4% 1.2%	3.0% 3.0%	3.5% [§] 2.7%	15.2% 14.6%	1.3% 1.5%

*atenolol(50), pindolol (5) or thiazide(25)/ Enalapril or lisinopril(10)/ Felodipine or isradipine(2.5)

† p<0.025 compared to CCB group

¶p=0.028 compared to HCTZ for nonfatal heart failure

\$p=0.04 for comparison between the two groups

HOPE: Heart Outcomes Prevention Evaluation study - *TRIAL DESIGN* -

Treatment

Multicenter, multinational, randomized, double-blind, placebo-controlled parallel-group, two-by-two factorial study

High risk subjects!

Patients

55 years or older with history of vascular disease or diabetes mellitus, plus one other cardiovascular risk factor; patients with stroke or MI in previous month, heart failure or evidence of low ejection fraction excluded

Follow up and primary endpoint

Mean 5.0 years follow up for ramipril (4.5 for vitamin E). Primary endpoint composite of MI, stroke or cardiovascular death

HOPE: Heart Outcomes Prevention Evaluation study - *TRIAL DESIGN continued* -

Ramipril up to 10mg

Treatment

9297 patients (2480 women, 6817 men) randomly assigned to receive one of four treatments for 5 years:

- **Ramipril** 2.5 mg for 1 week, 5 mg for 3 weeks, then 10 mg + **vitamin E** 400 IU daily
- **Ramipril** 2.5 mg for 1 week, 5 mg for 3 weeks, then 10 mg + **placebo** matching vitamin E treatment
- **Placebo** matching ramipril treatment + **vitamin E** 400 IU daily
- **Placebo** matching ramipril treatment + **placebo** matching vitamin E treatment

HOPE: Heart Outcomes Prevention Evaluation study - *RESULTS* -

Termination 6 mo earlier22% risk reductionPrevent new DM

Ramipril vs. placebo

- Study halted 6 months early on recommendation of monitoring board because of consistent benefit of ramipril:
 - Composite primary endpoint of MI, stroke or death from cardiovascular causes significantly lower in ramipril group (14.0 vs. 17.8%, relative risk 0.78, P<0.001)</p>
 - Individual primary endpoints (MI, stroke, death from cardiovascular causes), all-cause mortality, and secondary outcomes of revascularization and complications related to diabetes, significantly lower in ramipril group
- New diagnosis of diabetes significantly lower in ramipril group (3.6 vs. 5.4%, relative risk 0.66, P<0.001)
- Drug well tolerated as defined by permanent discontinuation of treatment (28.9% of ramipril group versus 27.3% placebo)

HOPE: Heart Outcomes Prevention Evaluation study - *RESULTS continued* -

MI, stroke or death from cardiovascular causes

The Hope Study Investigators. N Engl J Med 2000; 342: 145-53.

Prevention of Heart Failure in HOPE study

Malcolm J et al. Circulation 2003

Malcolm J et al. Circulation 2003

		Placebo N (%)	Ramipril N (%)	RR (95% CI)	Test of Interaction (P-value)
Total		534(11.5%)	417(9.0%)		
Age(yrs)	<65	184(8.7%)	139(6.8%)		0.920
	65+	350(13.8%)	278(10.7%)		
Systolic BP(mmHg)	<139	220(9.5%)	203(8.6%)	† •†-	0.024
	139+	314(13.5%)	214(9.3%)		
Heart Rate (bpm)	<71	294(10.8%)	231(8.4%)		0.948
	71+	240(12.4%)	186(9.8%)		
Gender	Female	136(11.3%)	117(9.2%)		0.648
	Male	398(11.5%)	300(8.9%)	- # -	
Diabetes	None	299(10.4%)	219(7.7%)		0.500
	Diabetes	235(13.3%)	198(11.0%)		
Known Hypertension	None	247(9.8%)	192(7.9%)		0.640
	Hypert	287(13.4%)	225(10.2%)		
Coronary Artery Disease	None	64(7.4%)	61(6.4%)		0.479
	CAD	470(12.4%)	356(9.7%)		
Prior MI	None	254(6.9%)	171(7.9%)		0.202
	MI	263(10.9%)	363(14.6%)		
LVEF	>0.40	317(13.2%)	243(10.2%)	-	0.318
	<=0.40	86(37.6%)	65(33.9%)		
Aspirin	None	110(9.1%)	104(8.1%)		0.254
	Aspirin	424(12.3%)	313(9.3%)		
Beta-blocker use	None	319(11.4%)	252(8.5%)		0.986
	BB use	215(11.6%)	165(9.1%)		
Diuretic	None	392(9.9%)	300(7.6%)	-	0.696
	Diur	142(20.1%)	117(16.4%)		
				: 1	
			0	.5 1	1.5
			Rami	pril better Place	bo better

LIFE: losartan vs atenolol Dahlöf B et al *Lancet* 2002

LIFE: losartan vs atenolol Dahlöf B et al *Lancet* 2002

End points

Admission due to heart failure Losartan 7.1% / Atenolol 7.5%

Endpoint	Losartan (n=	Losartan (n=4605)		4588)	Adjusted hazard	p	Unadjusted hazard	p
	n	Rate*	n	Rate	ratio (95% CI)†		ratio (95% CI)	
Primary composite endpoint‡	508 (11%)	23-8	588 (13%)	27.9	0.87 (0.77-0.98)	0.021	0.85 (0.76-0.96)	0-009
Cardiovascular mortality	204 (4%)	9.2	234 (5%)	10-6	0.89 (0.73-1.07)	0.206	0.87 (0.72-1.05)	0.136
Stroke	232 (5%)	10-8	309 (7%)	14.5	0.75 (0.63-0.89)	0.001	0.74 (0.63-0.88)	0.0006
Myocardial infarction	198 (4%)	9.2	188 (4%)	8.7	1.07 (0.88-1.31)	0.491	1.05 (0.86-1.28)	0-628
Other prespecified endpoints								
Total mortality	383 (8%)	17.3	431 (9%)	19.6	0.90 (0.78-1.03)	0.128	0.88 (0.77-1.01)	0-077
Admitted to hospital for:								
Angina pectoris	160 (3%)	7.4	141 (3%)	6-6	1.16 (0.92-1.45)	0.212	1.13 (0.90-1.42)	0.284
Heart failure	153 (3%)	7.1	161(4%)	7.5	0.97 (0.78-1.21)	0-765	0.95 (0.76-1.18)	0.622
Revascularisation	261 (6%)	12.2	284 (6%)	13.3	0.94 (0.79-1.11)	0-441	0.91 (0.77-1.08)	0.292
Resuscitated cardiac arrest	9 (0-2%)	0-4	5 (0.1%)	0-2	1.91 (0.64-5.72)	0.250	1.80 (0.60-5.36)	0.294
New-onset diabetes§	241 (6%)	13.0	319 (8%)	17.4	0.75 (0.63-0.88)	0.001	0.75 (0.63-0.88)	0.001

*Per 1000 patient-years of follow-up. †For degree of left ventricular hypertrophy and Framingham risk score at randomisation. ‡Cardiovascular mortality, stroke, and myocardial infarction (numbers of patients with a first primary event). §In patients without diabetes at randomisation (losartan, n=4019; atenolol, n=3979).

LIFE Dahlöf B et al *Lancet* 2002

Regression of LVH

VALUE

Primary endpoint

- composite cardiac morbidity and mortality
- Secondary endpoints
 - fatal/non-fatal myocardial infarction
 - fatal/non-fatal stroke
 - fatal/non-fatal heart failure
- Pre-specified analyses
 - all-cause mortality
 - new onset diabetes

VALUE: Primary Composite Cardiac Endpoint

Julius S et al. Lancet. June 2004;363

VALUE: Heart Failure Hospitalisation for HF or death from HF

Julius S et al. Lancet. June 2004;363.

VALUE: Systolic Blood Pressure in Study Sitting SBP by Time and Treatment Group 155 ---- Valsartan ----- Amlodipine 150mmHg (N= 7649) (N = 7596)145-140-135 -18 24 30 36 12 2 3 42 48 54 1 6 60 66 **Baseline** (or final visit) **Months** mmHg **Difference in SBP Between Valsartan and Amlodipine** 5.0-4.0-3.0-2.0-1.0-0-2 3 36 18 24 30 54 12 42 **48** 60 66 6 -1.0-(or final visit) **Months**

Julius S et al. Lancet. June 2004;363.

The Antihypertensive and Lipid-lowering Treatment to Prevent Heart Attack Trial (ALLHAT)

JAMA 2002;288

ALLHAT trial

- 33,357 age over 55 + at least 1 CHD risk
- Chlorthalidone 12.5-25mg : 15,255
- Amlodipine 2.5-10mg : 9,048
- Lisinopril 10-40mg : 9,054

ALLHAT trial

- Primary outcome (fatal CHD or non-fatal MI) : no difference
- All cause mortality : no difference
- 6-yr rate of HF : chlorthalidone(7.7%) < amlodipine(10.2%)
- Combined CVD : chlorthalidone(30.9%) < lisinopril(33.3%)

Heart Failure in ALLHAT trial

RR for heart failure 1.38 for amlodipine(p<0.05) 1.20 for lisinopril

Time to Event, Y

Regression of LVH (Stage B)

Stage	Description	Examples
A	Untreated of inappropriately treated hypertnsion	Control of blood pressure Modification of risk factors of atherosclerotic vascular disease
В	Concentric or eccentric LVH without Sx Asymptomatic LV dysfunction	Regression of LVH Preventing progression to symptomatic HF
C	Symptomatic LV systolic dysfunction HF with preserved systolic function	Relieve symptom of heart failure & improve survival
D	End stage heart failure	Relieve Sx and improve quality of life

Practical Clinical Situation

3 Phases of Myocardial Hypertrophy

- Developing hypertrophy
- Compensatory hypertrophy
- Heart failure

3 Phases of Myocardial Hypertrophy

	NORMAL	(1) ACUTE PR LOAD	(2) COMPEN- SATORY	(3) CARDIAC FAILURE
		h	HYPERTROPHY H	R
LV sustalia prossura	Swynghedauw (1990)			
LV systolic pressure	N N	+	+	+
LV radius	IN	+	+	т
LV wall thickness	N	N	+	+
LV diastolic volume	N	+	N	+
Systolic wall stress	N	+	N	+
Diastolic wall stress	N	+	Ν	+
Diastolic dysfunction	N	±	+	+
Systolic dysfunction	N	±	0	+

Left Ventricular Hypertrophy

Concentric LVH wall thickness ↑ LV mass ↑

Concentric remodeling wall thickness ↑ but LV mass →

Eccentric LVH wall thickness → LV mass(volume) ↑

Components of Cardiac Remodeling in Hypertensive Heart Disease

Morphological Aspect

- Cardiomyocyte
- Interstitium
- Vasculature

Structural Change of Myocardium Morphological Change of Cardiac Hypertrophy

Normal Heart

Hypertrophied Heart

- Modest size ratio of nucleus and cytoplasm.
- Delicate interstitial supporting stroma
- Rich vascularity.

- Enlarged myocardial cells
- Large hyperchromatic nuclei
- Increased amount of interstitial tissue
- Relatively scanty vascularity

Molecular Basis of Cardiac Hypertrophy Outline of Alterations of Protein Synthesis to Chronic Load

 Stretch activated ion channels PKC via phospholipase C

 → stimulate proto-oncogenes Tyrosine kinase
 Ca influx

Agonist for heptahellical receptor ANG II

 α1-catecholamines
 Eendothelin-1

Growth factors IGF

TGF

Molecular Basis of Cardiac Hypertrophy

Stretch and Cardiac Growth (Role of Angiotensin II & Endothelin)

Interstitium

Interstitium

Detremental Consequence of Myocardial Fibrosis

Vasculature

Vasculature Microangiopathy in Hypertensive Hypertrophy

Regression of LVH Effect of Carvedilol on LV Mass Lowes BD. Am J Cardiol 1999

Regression of LVH Comparisons of anti-adrenergic properities of β-blockers & ACE inhibitors

	Metoprolol	Bucindolol	Carvedilol	ACEIs
β1-blockade	++	++	++	0
β2-blockade	0	+	+	0
α1-blockade	0	0	+	0
Down regulates	_	+	+	-
β1-receptors				
Cardiac NE	0	+	+	+
Systemic NE	0	+	0	+
ANG II	+	+	+	+
Total score	+3	+7	+7	+3

LIFE Dahlöf B et al *Lancet* 2002

Regression of LVH

Symptomatic LV dysfunction (Stage C) systolic / diastolic dysfunction

Stage	Description	Examples
А	Untreated of inappropriately treated hypertnsion	Control of blood pressure Modification of risk factors of atherosclerotic vascular disease
В	Concentric or eccentric LVH without Sx Asymptomatic LV dysfunction	Regression of LVH Preventing progression to symptomatic HF
С	Symptomatic LV systolic dysfunction HF with preserved systolic function	Relieve symptom of heart failure & improve survival
D	End stage heart failure	Relieve Sx and improve quality of life

Diastolic Dysfunction

Prerequisites

- Diastolic heart failure (property of myocardium?)
- HF with preserved systolic function (composite mechanism?)

Diastolic dysfunction Starling's curves & filling curves

ORIGINAL ARTICLE

Diastolic Heart Failure — Abnormalities in Active Relaxation and Passive Stiffness of the Left Ventricle

Michael R. Zile, M.D., Catalin F. Baicu, Ph.D., and William H. Gaasch, M.D.

A problem of myocardium?

CHF in subjects with normal vs reduced LVEF Framingham Heart Study

Vasan RS et al. JACC 1999;33:1948

37/73 (51%) had normal LVEF 33 of women 9(27%); 40 of men 27(67.5%) had reduced LVEF

Summary of epidemiology and outcomes in patients with CHF and preserved systolic function

Dauterman KW, Am H J 1998;135:S310

Study	Setting	Criteria of LV function	Number	prevalence	Mortality
Gardin	Community	Echo, unclear	79	47%	
McDermoff	Ref Hosp	Echo, LVEF>50%	298	31%	
Madsen	Comm Hosp	Echo, LVEF>53%	190	14%	
Takarada	Ref Hosp	Echo, LVFS >30%	172	24%	
Ghali	Ref Hosp	Echo, LVFS >24%	78	28%	
McDermoff	Ref Hosp	Echo, LVEF >50%	413	28%	35%/69%
Dauterman	Random	Echo, RI, LVFS >40%	498	30%	
Vasan	Community	Echo, LVEF > 50%	77	51%	17.9/8.9/3.7
Cohn	Ref Hosp	Echo or CXR, CT<0.55 or LVEF >45%	623	13.3%	19%/8%
Setaro	Ref Hosp	RI, LVEF > 45%	52		56% at 7yrs
Gahli	Ref Hosp	Echo, LVFS > 24%	78		64/36%
Kinney	Ref Hosp	Echo, LVFS > 17%	91		11mo/26mo
Warnowicz	Ref Hosp	RI, LVEF > 45%	39		30/25%
Judge	CABG	Echo, LVEF > 45%	284		

Survival Rate & Prognostic Factors of Patients with Heart Failure in Korea Multicenter Survey

HF with Preserved LV systolic function

Diastolic heart failure: Effects of age on prevalence and prognosis

parameter	<50	50-70	>70
prevalence	15	33	50
Mortality	15	33	50
Morbidity	25	50	50

Data from 14 epidemiologic study Mortality: 5-yr mortality rate Morbidity: 1-yr rate of admission

Characteristics of HF with preserved LV systolic function

Older age and female Systolic hypertension Exacerbated hypetensive response Coronary artery disease Diabetes Abrupt pulmonary edema Ventricular stiffening Arterial stiffening Impaired diastolic properties (-dp/dt..)

Treatment of Diastolic Heart Failure

Control of blood pressure Prevention and control of tachycardia Maintain atrial contraction Control of volume Control of ischemia

CHARM Preserved Trial

Ongoing Trials in Diastolic Heart Failure/diastolic dysfunction

<u>Trial</u>	<u>Agent</u>	<u>Sample,</u> <u>Duration</u>	Inclusion Criteria	Principal Outcomes
SWEDIC	Carvedilol vs. Placebo	140,9 mths	DD by doppler	Regression of DD
Wake-Forest	Losartan vs. HCTZ	NA, 6 mths.	Exercise induced HTN and DD	Exercise tolerance, VO2 max
MCC-135	MCC-135 (SR Ca2+ uptake)	NA, 6 mths	CHF, EF<40%	Exercise tolerance, VO2 max.
PEP-CHF	Perindopril vs. Placebo	1000, 1.5 yrs	CHF, EF>40%, WMI >1.5	Death or hospitalization for HF.
SENIORS (diastolic subset)	Nebivolol vs. Placebo	NA	EF>35%	Death or hospitalization for HF.
I-PRESERVE	Irbesartan vs. Placebo	3600, 2 years	CHF, EF >45%	Death or hospitalization for HF.
Hong Kong Trial	Irbesartan vs. Ramipril vs. Placebo	450, 1 year	CHF, Doppler criteria	Death or hospitalization for HF; quality of life; 6-min walk test.

Systolic Dysfunction

HF Compensatory Mechanisms

Development of HF in Hypertensive Patients

ACE inhibitors -Comparison of large scaled ACE inhibitor trials-

Trial	Agent	Subjects	Results
CONSENSUS	Enalapril	NYHA IV	Mortality (36% vs 52%)
(n=253,1987)	vs placebo		
SOLVD-T	Enalapril	NYHA II-III	26% mortality
(n=2569,1991)	vs placebo		
SOLVD-P	Enalapril	NYHA I-II	20% mortality
(n=4228, 1992)	vs placebo		
SAVE	Csptopril	AMI	21% mortality
(n=2231,1992)	vs placebo		
AIRE	Ramipril	Post MI	25% mortality
(n=2006,1993)	vs placebo		

Muticenter Placebo-Controlled Trials with Beta-blockers in Chronic Heart Failure

Trial	Agent	Primary	Achieved	Other Outcomes
		End point	End Point	
MDC	Metoprolol	M+M	P=0.058	Decreased hsp
Bucindolol MC	Bucindolol	EF dose response	Yes	Prevention of LVEF
CIBIS-1	Bisoprolol	Mortality	No	IDC increased mortaility
CIBIS-2	Bisoprolol	Mortality	Yes	Decreased hsp
MERIT-HF	Metoprolol*	Mortality	Yes	Decreased hsp

M+M: mortaliry and morbidity, hsp: hospitalization

EF: ejection fraction

* Metoprolol succinate(slow releasing form)

Muticenter Placebo-Controlled Trials with Carvedilol in Chronic Heart Failure

Trial	Primary	Achieved	Other Outcomes
	End point	End Point	
MOCHA	Submax Ex	No	Decreased mortality and hsp
PRECISE	Submax Ex	No	Decreased hsp and Sx
Mild carvedilol	HF progression	Yes	Decreased hsp
Severe carvedilol	QOL	No	Decreased hsp
ANZ carvedilol-1	Submax Ex	No	Decreased remodelling
ANZ carvedilol-2	M+M	Yes	Decreased hsp

Submax Ex: Submaxiam exercise, hsp: hospitalization, HF: heart failure QOL: quality of life, M+M: mortaliry and morbidity

Beta-blockers in heart failure -Annualized mortality rate from major clinical trials-

	Placebo mortality rate (annualized %)	β-blocker mortality rate (annualized %)	
US carvedilol	15.0 *	6.0 *	
CIBIS-2	13.2	8.8	
MERIT-HF	11.0	7.2	

Anti-adrenergic therapy in heart failure Number needed to treat for one year to save one life*

Metoprolol CR/XL on HF with Hypertension Herlitz J et al. J Card Fail 2002

Subgroup of HT

Overall in MERIT-HF

Recovery pattern and term of reversal of left ventricular remodeling in patients with congestive heart failure

Kyu Hyung Ryu,MD, FACC, Seong Woo Han,MD, Wo Seok Cheon,MD, Eung Joo Kim,MD, Yung Lee,MD. Department of cardiovascular medicine, Hallym Univ. Hospital

Results Recovery Pattern

	I-CMP	HT-CMP	T-CMP	D-CMP
	(n=18)	(n=29)	(n=24)	(N=11)
Age (yr)	68±5.3	58 ± 13.6	66 ± 10.3	51 ± 15.8
Male (%)	11.1	75.9	54.2	63.6
LVEF at Adm(%)	22.8 ±6.6	22.8 ± 6.1	$\textbf{21.9} \pm \textbf{6.0}$	19 ± 6.3
Partial recovery	12 (67%)	16 (55%)	9 (38%)	8 (73%)
Complete recovery	6 (33%)	13 (45%)	15 (62%)	3 (27%)

* LVER >40% and LVED >54mm, ** LVEF >50% and LVED \leq 53mm

Results Recovery Term

	I-CMP	HT-CMP	T-CMP	D-CMP
	(n=18)	(n=29)	(n=24)	(N=11)
<1 month	4(22%)	8(28%)	18(75%)	0
1-3months	7(39%)	9(31%)	5(21%)	0
3-6months	5(28%)	9(31%)	1(4%)	2(19%)
6-12months	2 (11%)	3 (10%)	0	9 (81%)

Summary Management of Hypertensive Heart Failure

Control of blood pressure Modification of risk factors for CVD Concern for diastolic heart failure Aggressive medical treatment Regarding as reversible condition Drug therapy of diastolic and systolic dysfunction

Thanks for your attention !