Coronary CT Angiography

Yeon Hyeon Choe, MD

Department of Radiology, Samsung Medical Center, Sungkyunkwan University

Applications of MDCT: Ischemic Heart Diseases

- Coronary arterial morphology (angiographic display)
- Coronary plaque characterization
- Postop. Evaluation (CABG)
- Stent patency
- Coronary calcium score
- Cardiac perfusion
- Cardiac function

Techniques of 16-slice CT: Coronary Studies

- Calcium scoring: no contrast, 1.2 mm scan
- Postcontrast studies
 - Nonionic CM 80-120 ml, 4 ml/s
 - Delayed scan at 10 min for myocardial imaging
- Heart rate control by preCT medication (beta-blocker) in pt with HR > 60 bpm (metoprolol 50-100 mg p.o., 1 h before)

Image Acquisition and Reconstruction

- Retrospective ECG-gating
- Image reconstruction according to cardiac phases (5-95% of RR interval, 1-20 phases)
- 0.6 mm slice thickness (180-220 images during 20-25 sec breath-hold)

3D Techniques and Image Analysis

- Volume rendering
- Maximum intensity projection (MIP)
 - Vessel analysis
 - Sub-volume MIP
- Reformation in cardiac short and long axes
- Endoscopic view (fly-through)
- Source images

Volume Rendering

Vessel Analysis, Curved Reformation

Heart Rate

HR = 70-74

HR = 61-64

LCX and RCA-PDA, 75%

Stent: Patent vs Occluded

Plaque Characterization: IVUS vs CT

SoftSoft 14 ± 26 HU 49 ± 22 HUIntermed 91 ± 21 HUCalcified 416 ± 194 HU 391 ± 156 HU

Schroeder et al. J Am Coll Cardiol 2001;37:1430 Leber et al. J Am Coll Cardiol. 2004;43:1241

Fatty Plaque and Stent

16-CT vs IVUS (n = 22)

Sens, 78%; Spec, 87%.

For Exclusively Noncalcified Plaque: Sens = 53% (8/15). Underestimation of plaque volume 5, 94%; by MDCT (24 vs 43 mm³, p <.001) 5, 94%.

Multiple Calcific Lesions, No Visible Lumen on CAG (M/73)

Multiple Calcific Lesions, No Visible Lumen on CAG

Blooming Effect of Calcium

W560/L190

W2000/L780

Y Graft to LAD and PDA

Vessel Analysis

Coronary Calcium Scoring

Prognostic Value of CAC Screening

- 10,377 asymptomatic subjects
- 5 y follow-up, death rate = 2.4%
- CAC was independent predictor of mortality (p<.001)
- 5-y risk-adjusted survival was 95% for score > 1,000, 99% for score < 10.
- Risk-adjusted relative risk value for CAC, compared with CAC < 10: 1.7, 2.5, 4.0 for >100, >400, >1000

Shaw et al. Radiology 2003;228:826-833

RCA from Lt Coronary Sinus

Myocardial Bridge

Kawasaki Disease (M/13y)

RCA Involvement of Aortitis (F/55)

Collateral Circulation

Shin SD, M/73

Patients with Chest Pain

Patient with Acute Chest Pain at ER

• ECG-gated CTA covering whole chest for exclusion of

- Aortic dissection
- Pulmonary embolism
- Coronary artery disease
- Myocardial infarction

MDCT Evaluation of Myocardial Perfusion and Viability

Reperfusion Model

Early phase (18 sec) Late phase (10 min) TTC-staining

Time Course: CT vs MRI in Occlusion Model

Human Study

 55 patients underwent MDCT and MRI in the acute stage (within 2 weeks, n = 34) and/or chronic stage (1-36 months, n = 24) of MI

MR Imaging and MDCT

- First-pass and 5-min and 15-min delayed myocardial MR imaging was performed using an 1.5 T scanner (GE Signa CV*i*) with injection of 0.15 mmol/kg Gd-DTPA
- Within 24 hours after MR imaging, ECGgated MDCT was performed using GE 4slice (n = 12) or 16-slice (n = 46) scanner at 25-sec and 10-min delay with injection of 120 ml nonionic contrast at 4 ml/s.

Results

- MDCT showed areas of MI on early phase images in all cases except one (4.1 %) and in all cases on late phase images.
- Myocardial abnormalities on CT correlated well (94.9%) with those on MRI except 3 exam sets without visible lesions on early CT (n = 1) or perfusion MRI (n = 2) in terms of location and depth of the lesions.

Comparison of Infarct Volume (%) between CT and MRI

ECT PMRI LCT DMRI

Correlation of Infarct Volume (%) between CT and MRI

AMI, Persistent Perfusion Defect on Late Phase, CT = MRI

2-vessel Lesions in AMI, CT = MRI = PET

MRI vs CT in AMI: Multiple Areas of Delayed Hyperenhancement

Color-coded Images with LV Function Assessment in AMI

Stenting Complication

MDCT Assessment of Coronary Artery Stenosis (> 50%)

	Slice	Assess	Sens	Spec	PPV	NPV
	(DR)	(%)				
Knez	4	94	81	97	81	97
(n = 44)						
Achenbach	4	68	85	76	59	98
(n = 64)						
Nieman	16	100	95	86	80	97
(n = 58)						
Ropers	16	88	92	93	79	97
(n = 77)						

Limitations of Coronary CTA

- Extensive calcifications
- Stents: spatial resolution
- Heart rate: temporal resolution
- Radiation (3.5-5.9 mSv)
- Small branches/septal branches

Cardiac Function Analysis

Volume ejection fraction
Wall motion analysis

Wall thickness and thickening

New Developments

40-slice and 64-slice CT (rotation ~0.33 s, 4-5 s scan) Volume CT (flat panel CT)

Summary

- MDCT allows reliable coronary angiography.
- One-stop shop imaging of ischemic heart disease is feasible using MDCT.

Conclusion

- MDCT can exclude or prove significant coronary stenosis.
- Only MDCT can detect early coronary atheroscleosis noninvasively and help start preventive medication in time.

Thank You

