

Definition of Myocarditis

- an INFLAMMATION INFILTRATE and by INJURY to the adjacent myocardial cell that is <u>not typical of</u> INFARCTION
- Dallas Criteria (1986)
 - inflammatory infiltrate of the myocardium with necrosis and/or degeneration of adjacent myocardium not typical of the ischemic damage associated with coronary artery disease

Etiologic Agents of Myocarditis

Infectious Agents

Virus

Coxsackievirus(A,B), HIV Echovirus, Influenza(A,B), Poliovirus, Herpes Simplex, Varicella-Zoster, Rubella, Rubeola,

Epstein-Barr,Cytomegalovirus, Mumps, Vaccinia, Hepatitis B,

Bacteria : diphtheria, Neisseria

Metazoa : Trichinosis, Echinococcosis

Protozoa : Trypanozoma, Toxoplasma

Fungus : Aspergillosis, Cadidiasis

Toxic Agents

Anthracyclines

Catecholamines

Interleukin-2

Interferon-alpha2

Hypersensitivity

Diagnosis of Viral Myocarditis

Serology

- 4-fold increase of Neutralization Ab titer
- Virus culture in tissue
- Viral genomes in tissue
 - by PCR, Hybridization
- Viral proteins in heart

Neutralization Ab Test (MTT Assay)

Detection of enteroviral Genome by in situ Hybridization in CVB2 myocarditis

Cardiac & Vascular Center Samsung Medical Center

Badorff C. Med Microbiol Immunol (Berl). 2003 Aug 12

Detection of enteroviral capsid protein VP1 by immunohistochemistry

- A : fatal myocarditis
- B : D-CMP
- C: Chronic myocarditis
- D : Negative control with IgG2a x200 : A, B1, C1, D x600 : B2, C2

Cardiac & Vascular Center Samsung Medical Center

Circulation 2000;101:231

Coxsackievirus Type B3 (CVB3)

- 7.4 Kb ssRNA picornavirus
 - like as polio-, echo-, rhinovirus
- highly cardiotropic
- induces myocarditis
- progress to cardiomyopathy

Diseases Associated with Coxsackievirus

Table 1. Diseases associated with coxsackievirus infections

	Mild diseases	Severe diseases
Acute diseases Chronic diseases	Rash Upper respiratory Myalgia Pyrexia of unknown origin	Aseptic meningitis Encephalitis, paralysis Hepatitis Pancreatitis Pleurodynia Pericarditis Myocarditis Keshan disease Insulin-dependent diabetes mellitus
		Myocarditis Dilated cardiomyopathy Meningitis/encephalitis

Diseases Associated with Coxsackievirus

Control Cardiac & Vascular Center Samsung Medical Center

Time Course of Viral Myocarditis

Figure 2. Time Course of Experimental Viral Myocarditis in Mice.

Adapted from Kawai¹¹ with the permission of the publisher. The timeline is not drawn to scale.

Cardiac & Vascular Center Samsung Medical Center

N Engl J Med 2000;343:1388

Clinical Presentation & Evolution

Figure 3 Clinical presentation and evolution of acute viral myocarditis (dotted lines indicate potential evolution). DCM, dilated cardiomyopathy.

Enteroviral Infection Manifested by Dilated Cardiomyopathy

Male / 20

Chest PA

PA

2003/3/21

2003/07/07

Cardiac & Vascular Center Samsung Medical Center 2003/11/26

Echocardiography and NT-proBNP

	3/22	4/4	5/19	10/06
LV	74/81	76/81	74/82	46/62
EF(%)	18	14	19.6	44.9
LA	57	52	54	36
NT- proBNP	2254	2089	1680	5.0

Samsung Medical Center

Clinical Presentation & Evolution

Figure 3 Clinical presentation and evolution of acute viral myocarditis (dotted lines indicate potential evolution). DCM, dilated cardiomyopathy.

Unadjusted Transplantation-free Survival According to Clinicopathological Classification

N Engl J Med 2000;342:690-5

Male / 15

Case Summary – initial presentation

■ A 15-year-old boy was admitted with anterior chest discomfort for three days at a university Hospital.

- One week earlier, he had had flu-like symptoms.
- On hospital day 2, ventricular tachycardia and complete RBBB developed. Shock and urine output decreased.
- CPR was done for 2 times and started hemodialysis.
- Echocardiography showed low EF (15-20%), moderate TR, MR and moderate pulmonary HT.
- He was transferred to SMA at hospital day 14.

Laboratory Findings - pancreatitis

	01/30	02/8	2/16	03/16
	Day 1	Day 9	Day 17	OPD
LVID s/d	50/59	39/55		40/55
EF	22	45		55
Amylase / Lipase	159 / 938	164 / 739	131 /454	83 / 131
AST / ALT	16 / <mark>102</mark>	24 /12	23 / 25	12 / 17
CK-MB	6.41	4.90		
NT-proBNP	35000	5805	1991	287.4

Endomyocardial biopsy findings done at hospital day 12 (+ 2 weeks)

Focal mild hypertrophy of muscle cells and enlarged nuclei with focal microcalcifications. Few inflammatory cell infiltration. Minimal interstitial fibrosis. No evidence of viral inclusion

Cardiac & Vascular Center Samsung Medical Center

Neutralization test with serial sera

Samsung Medical Center

100%

90%

80%

70%

60%

50%

40% 30%

20%

10%

0%

Fulminant Coxsackieviral B3 Myocarditis

First Case Report; Identified CVB3 VP1 proteins in the tissue biopsy from human Fulminant myocarditis Female / 18

Cardiac & Vascular Center Samsung Medical Center Case of fulminant Coxsackieviral myocarditis
A, C) EKG and Echo at ER
B, D) EKG and Echo at day 10
E) Left auricle (H& E stain, x200)
F) Left Auricle (Masson's Trichrome stain, x200)
G,H) Immunohistochemistry probed by anti-enteroviral VP1 Ab.(G; x100,H; x400)

Ventricular Assistant Device

Cardiac & Vascular Center Samsung Medical Center

Myocarditis with Hepatitis Male / 14

Case Summary – initial presentation

A 14-year-old boy was admitted with anterior chest pain for a day.

- Three days earlier, he had had flu-like symptoms.
- The patient had a positive troponin I (49.97 ng/ml) result and an elevated level of CK-MB (98.27 ng/ml)
- A coronary angiogram showed no thrombus and no clinically significant stenosis.

Case Summary – Hospital course

■ His ejection fraction at ER was over 50%

Eight hours after admission, complete AV block was developed and IV isoproterenol was started for heart rate control.

After then, various ventricular arrhythmias were developed and treated with DC version.

Shock and urine output decreased and treated with dopamine and dobutamine..

He was transferred to SMC after temporary pacemaker insertion and with amiodarone infusion (day 0).

Case Summary – EKG

Case Summary – Hospital course

Ventilation support were started due to hypoxia.

■ At day 1, shock and pulmonary edema progressed , and urine output was decreased and EF was < 20%.

Mechanical circulatory support was started with EBS (Terumo, CAPIOX SP101, Tokyo, Japan). Urine output and BP were maintained with EBS and inotropics.

After 56 <u>hours</u> of mechanical support with EBS, leftventricular-wall motion was restored and her ejection fraction was 45 % on echocardiography.

The EBS was removed and he was discharged at hospital day 17 without any symptoms of heart failure.

EBS continuous flow

Cardiac & Vascular Center Samsung Medical Center

Echocardiography						
	Date	Hosp day	LVID s/d (mm)	EF(%)	Other findings	
	Feb. 06 1 pm	0	Size were normal range	60	Mild MR on color Doppler	
	Feb. 07 6 pm	1		30	Global hypokinesia	
	Feb. 07 10 pm	1		20	(especially anterior & IVS)	
	Feb. 13	7	29/42	53	Hypokinesia (IVS & aneriorior wall) - pericardial effusion	
	Feb. 23	16	32/48	55.5	Normal Wall motion	

Cardiac & Vascular Center Samsung Medical Center

Laboratory Findings - hepatitis

	02/07	02/14	02/23	03/08
	Day 1	Day 7	Day 16	OPD
LVID s/d	-	29/42	32/48	-
EF	60→20	53	55.5	-
AST/ ALT	5730 / 3500	110 / 742	29 / <mark>86</mark>	16 / 14
CK-MB	22.43	3.56		0.36
NT-proBNP	-	2093	1109	272.6

Neutralization test with serial sera

Cardiac & Vascular Center Samsung Medical Center

Endomyocardial biopsy findings done at hospital day 10 (H&E, MT staining)

Fulminant Coxsackieviral B4 Infection

Dystrophin cleaved in infected myocytes in human tissue

VAD applied Female / 57

Case Summary – initial presentation

■ A 57-year-old woman was admitted with anterior chest pain for a day.

- Three days earlier, she had had flu-like symptoms.
- The patient had a positive troponin I (49.97 ng/ml) result and an elevated level of creatinine phosphokinase-MB (98.27 ng/ml)
- A coronary angiogram showed no thrombus and no clinically significant stenosis.

Case Summary – Hospital course

Eight hours after admission, shock and pulmonary edema developed.

Her ejection fraction became less than 15 percent from over 60% at admission.

Despite the use of an intra-aortic balloon pump for four hours, her shock and pulmonary edema progressed, and <u>recurrent ventricular tachycardia</u> occurred.

Mechanical circulatory support was started with a left ventricular assist device. (550 BIO-Console, Medtronics, Bio-Medicus, ECMO).

Case Summary – Hospital course

■ After <u>96 hours</u> of support with the left ventricular assist device (ECMO), left-ventricular-wall motion was restored and her ejection fraction was 56 percent on echocardiography.

ECMO was removed after 5 days. She was discharged after 35 days without any symptoms of heart failure.

Neutralization Test for all CVB Serotypes with day 15 serum

Neutralization Test for CVB4

PFU assay from tissue on HeLa

Viable virus was isolated from frozen left atrial tissue at day 1. The final concentration of virus was 1.5×10^4 PFU/ml

Cardiac & Vascular Center Samsung Medical Center

Badorff, Nat Med 5:320, 1999

CVB3 protease 2A cleaves dystrophin-Sarcoglycan Complexes

Cardiac & Vascular Center Samsung Medical Center

Badorff, Nat Med 5:320, 1999

Therapeutic Guideline of Fulminant Myocarditis

National Survey of Fulminant Myocarditis in Japan — Therapeutic Guidelines and Long-Term Prognosis of Using Percutaneous Cardiopulmonary Support for Fulminant Myocarditis (Special Report From a Scientific Committee) —

52 patients for 3 years	Age (years)	47.9±16.0
(Apr 1997 – Mar 2000)	Etiology	20/20
(April 1007 - Mari 2000)	Idiopathic Viral	34 (65.4%)
	Eosinophilic	2(3.8%)
	Giant cell	2 (3.8%)
	Definitive diagnosis	
	Endomyocardial biopsy	43
Cardiac & Vascular Center	Autopsy	10
Samsung Medical Center	Circ J 2002:66:133	4

Initial and Cardiac Symptoms

Initial symptoms	(<i>n</i> =52)	Cardinal symptoms	(n=51)
Increased fever	32 (61.5%)	Dyspnea	20 (39.2%)
General fatigue	12 (23.1%)	Shock	15(29.4%)
Cough	11 (21.2%,	Nausachomiting	11(21.6%)
Nausea/vomiting	8 (15.4%)	Nauseuvomung	11(21.070)
Arthralgia/myalgia	6 (11.5%)	Increased fever	11 (21.6%)
Headache	6 (11.5%)	Syncope/cramp	10 (19.6%)
Chest pain	3 (~ 5.8%)	Chest pain	9 (17.6%)
Syncope/cramp	3 (~ 5.8%)	General fatigue	6(11.8%)
Diarrhea	3 (- 5.8%)	Abdominal pain	3 (5 0%)
Appetite loss	3 (- 5.8%)	Di such as	2(3.970)
Pharyngalgia	2 (- 3.8%)	Diarrnea	2 (3.9%)
Palpitation	2 (3.8%)	Palpitation	2 (- 3.9%)
Abdominal pain	1(-1.9%)	Coughing	1 (2.0%)
Epigastralgia	1(-1.9%)	Cvanosis	1(2.0%)
Back pain	1(-1.9%)	Headache	1(2.0%)
Dyspnea	1(-1.9%)	Cardionulmonam, amost	1(2.0%)
Chest discomfort	1(-1.9%)	Caratopulmonary arrest	I(2.0%)
Common cold	1 (1.9%	Epigastralgia	I(-2.0%)
		Back pain	1 (2.0%)

Cardiac & Vascular Center Samsung Medical Center

Guidelines of PCPS for acute fulminate myocarditis (1) Indication 1: cardiac arrest or life-threatening Indication 2: low output syndrome. *sheaths insertion in femoral artery and vein. arrhythmia. cardiopulmonary resuscitation successful cardiac stimulant unsuccessful peripheral circulatory failure (+) IABP peripheral circulatory failure (+) PCPS *Combination with IABP in case of indication 1.

Circ J 2002;66:133

Artificial Heart

Mechanical pumps for Cardiac Support

PUMP TYPE*	ADVANTAGES	DISADVANTAGES	INDICATIONS
Extracorporeal nonpulsatile†	Simple cannulation, inexpensive, univentricular or biventricular, readily available, extensive clini- cal experience	Short-term support, requires continuous availability of trained bedside personnel, systemic anticoagulant therapy needed, bleeding and thromboembolism possible, patient necessarily bedridden, no potential for rehabilitation	Postcardiotomy ventricular dysfunction, neonatal respiratory failure (extracor- poreal membrane oxygenation)
Extracorporeal pulsatile‡	Univentricular or biventricular	Short-term support, systemic anticoagulant therapy needed, patient usually bedridden, bleeding and thromboembolism possible, limited potential for rehabilitation	Postcardiotomy ventricular dysfunction, right-sided heart failure after left ven- tricular assist device implantation, bridge to transplantation
Implantable pulsatile§	Potential for outpatient and long- term support, excellent poten- tial for rehabilitation	Expensive, univentricular support, abdomi- nal placement required, infection possible, mechanical failure possible, bleeding and thromboembolism possible	Bridge to transplantation, bridge to recovery, potential long-term use
Total artificial heart¶	Biventricular support, orthotopic placement	Not FDA-approved, bleeding and thrombo- embolism possible, bulky external console, systemic anticoagulant therapy needed, infection possible, mechanical failure possible, expensive	Biventricular failure, bridge to trans- plantation

Thermo-Cardiosystems device

Cardiac & Vascular Center Samsung Medical Center

N Engl J Med 2001;345:1435

	YEAR	Event
	1954	Development of the cardiopulmonary-bypass machine
Development	1964	Chartering of the Artificial Heart Program by the National Heart, Lung, and Blood Institute
Development	1966	First use of a pneumatic device as a bridge to recovery
of $V \Delta D$	1967	First human heart transplantation
	1969	First successful use of <u>a pneumatic total artificial heart</u> as a bridge to transplantation
External battery pack and controls	1970s	Development of a variety of extracorporeal and implantable pneumatic ventricular assist devices
Aorta	1974	Redirection of the efforts of the Artificial Heart Program toward the development of implantable devices
Left	1984	First implantation of a total artificial heart as a permanent device
Diapl	1985	Multicenter evaluation of left ventricular assist devices as a bridge to transplantation
Outflow -	1991	Moratorium on the use of the total artificial heart
External	1993	FDA approval of a New Investigational Device exemption for a total artificial heart
Dermaport Drive line blood pu	1994	FDA approval of a left ventricular assist device as a bridge to transplantation
access device	1994	First use of a wearable left ventricular assist device
Cardiaa & Vaaaular Cartar	1996– present	Recruitment of patients for a randomized trial comparing wearable left ventricular assist device with medical therapy

Cardiac & Vascular Center Samsung Medical Center

N Engl J Med 2001;345:1435

Indications for Device support

- 1. Cardiogenic Shock
- 2. Heart failure dependent on intravenous inotropic support
- 3. Outpatients with symptomatic heart failure functional class IV
- 4. Uncontrolled ventricular arrhythmia
- 5. Cardiac allograft dysfunction and/or cardiac allograft vasculapathy
- 6. Fulminant myocarditis

Benefits of mechanical support

- 1. Decrease cardiac strain and work load
- 2. Increase subendocardial blood flow
- 3. Normalize histologic changes
 - fiber orientation
 - Cardiac hypertrophy
 - Decrease myocyte wavy fibers and contraction-band necrosis
- 4. Decrease chamber size
- 5. Increase mitochondria energy metabolism
- 6. Inactivation of neurohumoral factors (RAAS, Sympathetic nervous system)

Current Status of Mechanical Cardiac Support Devices in USA

Types of Devices	ECMO	Centrifugal	Abiomed	Thoratec	Novacor	HeartMate	Cardiowest
FDA approved indications	N/A	N/A	Post-cardiotomy recovery	Post-cardiotomy recovery and bridge	Bridge	Bridge	Bridge*
Position	External	External	External	External	Internal	Internal	Internal
Ventricular support	Cardiopulmonary	Left, right or both	Left, right or both	Left, right or both	Left only	Left only	Left and right
Patient size	Small-large	Small-large	Small-large	Medium-large	Large	Large	Large
Average duration	Short	Short	Intermediate	Intermediate to long	Long	Long	Long
Power source	Electric	Electric	Pneumatic	Pneumatic	Electric	Electric or pneumatic	Pneumatic
Cannulation site	Arterial and venous	Arterial, atrial or ventricular	Arterial, atrial or ventricular	Arterial, atrial or ventricular	Ventricular	Ventricular	N/A
Native ventricle	Remains	Remains	Remains	Remains	Remains	Remains	Removed
Anti- coagulation	Yes	Yes	Yes	Yes	Yes	No	Yes
Patient ambulation	No	No	Yes, restricted	Yes	Yes	Yes	Yes
Wearable	No	No	No	No	Yes	Yes	No
Patient discharge	No	No	No	No	Yes	Yes-electric, yes-pneumatic*	No
Device cost	\$	s	\$\$	\$\$ to \$\$\$\$	\$\$\$\$	\$\$\$\$	N/A

*Investigational device exemption (IDE). ECMO = extracorporeal membrane oxygenation; FDA = Food and Drug Administration.

Cardiac & Vascular Center Samsung Medical Center

Consensus Conference Report, JACC 2001;37:340

Anticipated Survival According to Severity of Advanced Heart Failure

Disease entity	Severity of Heart Failure	Expected more than 50% Mortality	
	Chronic HF with exacerbation into critical low output state		
Cardiogenic shock	Acute myocardial infarction	In-hospital	
onoon	Post-cardiotomy shock		
	dependent on intravenous inotropic therapy	3-6 months	
	class IV symptoms on oral therapy	12-24 months	
Chronic	Refractory symptoms at rest or minimal exertion	less than 12 months	
heart failure	Risk factors such as decreasing sodium, increasing creatinine and/or BUN	less than 12 months	
	Stabilization as class III	more than 24 months	
Heart failure	refractory ventricular arrhythmias	Variable, not estimated	
Chronic severe post-transplant graft dysfunction with allograft vasculopathy less than 12 months			

Consensus Conference Report, JACC 2001;37:340

Guidelines of PCPS for acute fulminate myocarditis (2)

(1) adjustment of initial flow rate: 3.0-3.5 L/min.

(2) adjustment of flow rate: the lowest flow rate without peripheral circulatory failure by referring to the indicators of circulatory failure.
 (3) reconstruction of lar circulation; hypersing the descalis pedis or posterior tibial artery and arterial inflow catheter.

(3) reconstruction of leg circulation: bypassing the dorsalis pedis or posterior tibial artery and arterial inflow catheter.

(4) activated clotting time (ACT): adjustment to 200-300 s (heparin binding PCPS: 150-200 s).

Markers of management				
Indicators of circulatory failure	Indicators of cardiac function			
(1) pH, BE	(1) Wall motion			
(2) SVO2	(2) EF, %FS			
(3) LA	(3) Ejection time			
(4) TB (or AKBR)	(4) ETCO2			
(5) Blood biochemistry	(5) CI			
(6) Urinary amount				

Course of management

adjustment of flow rate: the lowest flow rate without peripheral circulatory failure by referring to the indicators of circulatory failure.
 reduction of flow rate: trial reducing the flow rate according to improvement of the indicators of cardiac function.

Circ J 2002;66:133

The end	Primary end point: All-cause mortality Secondary end points:
points for	A. Quality of life
critical	 B. Functional capacity, for example: Exercise capacity (if applicable) Hemodynamics Ability to leave hospital
populations	C. Cost
	Device cost—system and replacement parts
	In-hospital costs
	Out-of-hospital costs (to include medical, caregiver-related and,
	Cost-effectiveness*
	D. Components of morbidity (75), including:
	Thromboembolism
	Neurologic events
	Infection
	Bleeding
	End-organ dysfunction
	Right heart failure
	Psychiatric episode
	Renospitalization (if discharged)
	Worsening heart failure
	MI
	Arrhythmia
	Non-cardiac reasons
Cardiaa & Vacaular Captor	E. Device malfunction (to be specified in detail)
Samsung Medical Center	F. Device failure (to be specified in detail)

-

Guidelines of PCPS for acute fulminate myocarditis (3)

Prevention of complications

- (1) MOF or advancement of peripheral circulatory failure: increase of flow rate, CHF, nafamostat, ulinastatin.
- (2) circulatory disturbances of the legs: previous sheath insertion, preventive bypassing, relaxation, incision and amputation.
- (3) bleeding: adjustment to ACT 150-200s by prescribing nafamostat mesilate, hemostasis, blood transfusion (maintain above Hb 10 g/dl and plt 5.0×104/ 1).
- (4) hemolysis: haptoglobin, transfusion against failure of venous outflow catheter.
- (5) infection: antibiotics, detection and removal of the focus.
- (6) hyperkalaemia: detection and removal of the origin, CHF, GI therapy.
- (7) failure of venous outflow catheter: check tip-position, transfusion.

The standard for stopping PCPS	3
The following conditions are satisfied at flow rate of 1.0 L/min.	
Markers of circulatory failure	Markers of cardiac function
 Arterial blood gas analysis: no metabolic acidosis 	Wall motion: improvemen
(2) SVO ₂ >60%	(2) EF, %FS: improvement
(3) LA: normal	(3) Ejection time >200 ms
(4) TB (without hemolysis) <3.0 mg/dl (or AKBR: normal)	(4) ETCO2=PaCO2
(5) Blood biochemistry: recovery from organic failure	(5) CI >2.0 L·min-1·m-2

Factors Influencing Prognosis

- Important factors concerning the prognosis were
 - 1) the severity and grade of cardiac and renal dysfunction
 - 2) the adjusted support flow rate to enable recovery from circulatory failure
 - 3) prevention of circulatory disturbances of the legs and multiple organ failure directly associated with PCPS.
- Long-term prognosis of patients treated with PCPS
 - 1. the readmission rate was 10%
 - 2. the exacerbation rate was 3.3%
 - 3. mortality was 10% during the average follow-up period of 962 days.

Optimal management of the mechanical cardiopulmonary support and curative treatment for the myocarditis further improve the outcome of this disease.

Predictors of Clinical Manifestations and Courses In Patients with Acute Fulminant Coxsackievirus Myocarditis

	Age/Sex	Initial Manifestation	EF normalized	MCS/ Inotropics	CVB type
	F/25	Dyspnea	> 2 year	No	CVB3
	M/31	Fever	9 days	No	CVB3
NFM	M/46	Chest pain	8 days	No	CVB3
(11=3)	M/22	Dyspnea	12 months	No/yes	CVB3
	M/31	Dyspnea	0	No	CVB3/4
	F/57	Dizziness	6 days	VAD	CVB4
	M/15	Chest pain	48 days	No/yes	CVB3/4
FM	M/14	Dyspnea	8 days	EBS	CVB3
(11-3)	F/59	Chest pain	0	IABP	Adeno
	F/9	Chest pain	5 days	No/IABP	Adeno

Laboratory Markers between FM and NFM

	NFM	FM	P value
Age	29.2±10.1	30.8±22.3	ns
Initial NT pro-BNP	7500 ± 3305	18420±12320	ns
Peak Tnl	24.8 ± 33.5	889.2±610.8	P<0.05
Peak CK-MB	14.7±21.7	60.1 ± 67.7	P<0.05
WBC	6695 ± 639	8595 ± 5600	P<0.05
Initial ESR	14 ± 0	31.5 ± 17.6	ns
Initial CRP	3.29 ± 3.67	6.21 ± 3.05	ns

Cytokines between FM and NFM

	NFM	FM	P value
RVSP by Doppler	44.4 ± 3.2	31.5±2.1	P<0.05
IL-1 β	below deter	ns	
IL-6	below deter	ns	
hIL-6 (pg/ml)	28.6±9.3 239.7±124.1		P<0.05
TNFRII(pg/ml)	4.2±1.7 26.85±11.9		P<0.05
TNF-α	below deter	ns	

Predictors of Clinical Manifestations and Courses In Patients with Acute Fulminant Coxsackievirus Myocarditis

- The clinical courses of acute FM and NFM CVB myocarditis are too different.
- Among the initial laboratory findings, leukocytosis, initial cardiac enzymes, CK-MB, TnI, and cytokines, hIL-6 and TNFRII, may be helpful to predict the course of acute CVB myocarditis
- Since the patients with FM recover without residual LV dysfunction within one month and had more excellent long-term prognosis, the aggressive hemodynamic support is warranted.

University of California, San Diego, USA

- Kirk Knowlton M.D
- Neil Berkely
- Sally Huber, PhD, University of Vermont, USA
- Andrea Henke, PhD, University of Jena, Germany

,

Transformation of Myocarditis/Inflammatory cadiomyopathy to idiopathic D-CMP Virus associated 1 **Myocarditis D-CMP** with CMP **Evidence** Recovery Virus 🗧 CVB, Adenovirus – yes (+)Parvo-19, HCV, CMV - no (3) 2] Virus Negative **D-CMP** Autoimmune Viral **Myocarditis** myocarditis Virus(-) Cardiac & Vascular Center Med Microbiol Immunol

2004;163:61

Samsung Medical Center

69

Neutralization Test for all CVB Serotypes

Neutralization Test for CVB4

Incidence of Viral Genomes in Myocardium

MYOCARDITS			
Bowles/1986	Enterovirus	northern	50(%)
Kandolf/1991	Enterovirus	In situ	20-25
Maisch/1989	CMV In situ		20
Schonian/1991	CMV PCR/ <i>In situ</i>		10
Martin/1994	Enterovirus PCR		23
	Adenovirus		44
DILATED CARDIOM	YOPATHY		
Kandolf/1991	Enterovirus	In situ	20
Schonian/1991	CMV	In situ	15
Schonian/1993	CMV	PCR	<5
Matsumori/1995	HCV	PCR	17(%)

Cardiac & Vascular Center Samsung Medical Center

Prevalence of Myocarditis by Biopsy

REFERENCE	YEARS	Positive Biopsy Results	PATIENT GROUP
		% (no./total no.)	
Dec et al. ¹⁰⁶	1975-1983	67 (18/27)	Patients with recent-onset cardiomyopathy (<6 mo of symptoms)
Parrillo et al. ¹⁰⁹	1982-1988	37 (38/102)	Patients referred to the National Institutes of Health for randomized trial of prednisone in idiopathic dilated car- diomyopathy
Mason et al. ⁶	1986-1989	10 (214/2233)	Patients screened for the Myocarditis Treatment Trial
McCarthy et al. ¹¹⁰	1984-1997	14 (252/1757)	Large single-center series from Johns Hopkins University
McNamara et al. ¹¹¹	1996-1998	16 (10/62)	All patients with recent-onset dilated cardiomyopathy en- rolled in the Intervention in Myocarditis and Acute Car- diomyopathy trial
Drucker et al. ¹¹²	1985-1991	51 (20/39)	Children referred with the clinical syndrome of suspected myocarditis
Midei et al. ¹¹³	1983-1988	78 (14/18)	Women with peripartum cardiomyopathy from a single cen- ter (Johns Hopkins)
Bozkurt et al. ¹¹⁴	1990-1998	9 (1/11)	<u>Women with peripartum cardiomyopathy</u> from a single cen- ter (University of Pittsburgh)

Cardiac & Vascular Center Samsung Medical Center

N Engl J Med 2000;343:1388

Detection of enteroviral capsid protein VP1 by immunohistochemistry

E) Left auricle, H& E stain, x200 F) Masson's Trichrome stain, x200)G,H) Immunohistochemistry probed by anti-enteroviral VP1 Ab.(G; x100,H; x400)

Myocyte Injury in Acute Phase

Cardiac & Vascular Center Samsung Medical Center

Replication-defective CVB3 infection

Replication defective Vaccinia-CVB3-dVP0 virus infection can induce myofibril disruption

Cardiac & Vascular Center Samsung Medical Center

Wessely, Circulation 98, 1998

CVB3-dVP0 Transgenic Animal

CVB3-dVP0 transgenic animal shows d-CMP phenotype, increased ANF expression and myocardial fibrosis

Wessely, J Clin Invest 102, 1998

Case Summary – HIS and Nt test

Serial histological and immunohistochemical analysis of the right atrial appendage, that underwent biopsy at the time of insertion and removal of LVAD, showed the enteroviral capsid protein VP1 (primary antibody, Novocastra Laboratories) over the entire right atrial wall with scanty inflammation infiltrates.

Her serum neutralized coxsackievirus B4 (CVB4) in a neutralization test performed with CVB4 (American Type Culture Collection, J.V.B. Benschoten) as a control virus.

■The titer of neutralizing antibody in her serum at 16 days was more than four times the titer at 5 days and 40 days.

Devices for circulatory support currently used in

1. acute circulatory support < 1 month

- cardiac failure after cardiac operations, myocardial infarction shock or acute cardiomyopathy due to myocarditis or other causes, with a potential likelihood of recovery.
- 2. more prolonged support from 30 days to <1 year in
 - Waiting for transplantation but deteriorate before a heart becomes available and require mechanical support prior to transplantation.
 - chronic HF regain ventricular function and are able to have the devices removed without requiring transplantation.
- 3. permanent support as an alternative to transplantation
 - irreversible cardiac failure that might require circulatory support, but they are not good candidates for cardiac transplantation.

Therefore, if devices are inserted, they must be considered permanent or "destination therapy" and are currently investigational.

Cardiac & Vascular Center Samsung Medical Center Consensus Conference Report, JACC 2001;37:340